簡易檢索 / 詳目顯示

研究生: 黃宇璋
Huang, Yu-Chang
論文名稱: 利用多重積分與Laguerre模型進行系統鑑別: 考量實際操作條件之方法
Use of Multiple Integration and Laguerre Models for System Identification: Methods Concerning Practical Operating Conditions
指導教授: 黃世宏
Hwang, Shyh-Hong
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 108
中文關鍵詞: 多重積分順序演算法MIMO系統鑑別Laguerre模型模型降階未知擾動
外文關鍵詞: Multiple Integration, Sequential Algorithms, MIMO System Identification, Laguerre Model, Model Reduction, Unknown Disturbances
相關次數: 點閱:155下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在實務上,系統鑑別所面對的是具不確定性與限制的系統,包括程序本身及其所處環境的多種未知與限制因素。譬如程序初始狀態、模型的結構和參數、負載擾動和雜訊皆可能是未知的,另外鑑別實驗之輸入訊號改變須受到實際裝置的限制。面對這些客觀存在的諸多不確定性與限制,如何設計實際可行的鑑別實驗和發展估測演算法以獲得適當的程序與擾動模型,就是系統鑑別研究的主要課題。
    本論文發展三個線性系統鑑別方法,用於解決現場鑑別測試常遭遇的實際困難,以獲得正確的微差分方程或轉移函數模型。這些方法具備以下優點:首先,鑑別實驗較不受輸入測試訊號和實際操作條件的限制;其次,能夠直接從一組輸出入實驗數據同時估測出程序結構以及對應的模型參數,無須冗長或重覆之實驗操作過程;最後,能夠處理實際操作狀況,包括未知初始狀態、未知負載擾動以及雜訊干擾。
    第一個鑑別方法應用多重積分轉換來處理連續時間單一輸入/單一輸出程序,其特點是採用先繁後簡的兩段式測試訊號和兩階段順序式最小平方演算,將複雜的鑑別問題分解成兩個較簡單的參數估測問題。在第一階段利用後段測試數據來獲得程序轉移函數的分母多項式、未知擾動與初始狀態的估測,然後在第二階段利用前段測試數據來完成整個程序模型參數的估測。模擬和實驗範例的結果顯示,此法能夠有效地去除靜態、漂移或週期性負載擾動及初始狀態對程序鑑別的影響並且由於多重積分的使用對雜訊存在與模型結構不吻合的情況具有相當的強韌性。此法也提供簡易方式來獲得正確的模型結構並在非零初始狀態和擾動存在下達到模型預測和輸出量測相吻合的結果。
    第二個鑑別方法適用於離散時間多重輸入/多重輸出程序,針對每一個多重輸入/單一輸出子程序,使用一個含有可調時間縮放因子的Laguerre模型建立一條回歸方程式,以進行最小平方參數估測,其特點是可處理在未知時間進入鑑別測試的未知動態負載擾動。當負載擾動的動態與程序動態不同時,此回歸式中Laguerre模型的階次被擴增來包含程序、初始狀態、負載擾動及隨機性擾動。所得之Laguerre係數最小平方估測器配合三個誤差標準的最小化可用以有效和正確地建構程序與擾動模型。對於決定性負載擾動,兩個誤差標準被用來選擇適當的時間縮放因子、擾動進入時間與程序時延,可以確保程序模型的正確性,而對於隨機性擾動,另一個誤差標準被用來選擇適當的時間縮放因子與程序時延,以去除擾動所造成的負面效應。模擬研究證實此法能夠處理各種各樣決定性和隨機性擾動,並且對取樣時間的選擇不敏感,這對離散系統的鑑別尤其重要。此法的缺點則為Laguerre模型的擴增後階次必須大於真實程序階次,否則無法有效地描述未知擾動,因此難以獲得優良的降階程序模型。
    最後一個方法應用雙Laguerre模型於離散時間多重輸入/多重輸出程序的鑑別,其原理為在同一組測試數據下,針對程序和未知負載擾動採用兩個含有不同時間縮放因子的Laguerre模型來分開處理。其優點為允許針對程序之Laguerre模型階次小於真實的程序階次,因此可以獲得優良的降階程序模型,而其缺點是必須能夠適當地選出兩個不同的時間縮放因子來區分出並準確描述程序和擾動對程序輸出的影響。此法已被證實為可信賴的,能夠根據所提誤差標準來得到優良的降階程序模型。

    關鍵字: 多重積分、順序演算法、MIMO系統鑑別、Laguerre模型、模型降階、未知擾動

    In practice, system identification is faced with uncertain and constrained systems, including various unknown and constrained factors in the process itself and its surroundings. For instance, initial states of the process, model structure and parameters, load disturbances and noise can be unknown. In addition, changes in the input signal to an identification test may be restricted by practical devices. Under such uncertainties and constraints existing objectively, the major role of the identification studies is to design feasible identification experiments and to develop estimation algorithms that can acquire adequate process and disturbance models.
    This dissertation presents three identification methods to resolve various difficulties often encountered in field identification testing and hence obtain accurate differential (difference) equations or transfer function models. These methods possess the following advantages. First, their identification tests are less restricted to the input test signal and practical operating conditions. Second, they can estimate the model structure and the corresponding model parameters from a single set of test data, without lengthy or repetitive experimental procedures. Last, they can cope with practical operating conditions, such as unknown initial states, unknown load disturbances and noises.
    The first identification method applies the multiple integration transform to deal with the identification of continuous-time single-input/single-output processes. The feature of the method is that the two segments of a test signal, first complicated and then simple, and two-stage sequential least-squares algorithms are employed to divide the complicated identification problem into two simpler parameter estimation problems. At the first stage of estimation based on the latter segment of the test data, the algorithms can yield the estimation of the denominator polynomial of the transfer function model as well as unknown disturbances and initial states. At the second stage of estimation based on the former segment of the test data, the algorithms give the complete model parameter estimates of the process. Simulation and experimental studies reveal that the method can reject the effects of unknown initial states as well as static, drifting and periodic disturbances on identification results, and is rather robust with respect to noise and model structure mismatch due to the use of multiple integration. It also provides convenient ways to find the model structure and to fit model predictions to the output measurements in the face of unknown initial states and disturbances.
    The second identification method is suited to discrete-time multiple–input/multiple–output processes. For each multiple–input/ single–output subprocess, a regression equation is established based on a Laguerre model involving an adjustable time-scaling factor for least-squares parameter estimation. The feature of the method is that it could deal with unpredicted load disturbances entering the identification test at any unknown time. As the load disturbances possess dynamics distinct from the process dynamics, the order of the Laguerre model in the regression equation is augmented to incorporate terms regarding the process, load disturbances and stochastic disturbances. The resulting least–squares estimator of the Laguerre coefficients in conjunction with the minimization of three developed error criteria is thus employed to construct process and disturbance models efficiently and accurately. For deterministic disturbances, two error criteria are used to infer proper values of the time-scaling factor, the load entering time, and process time delays. In the presence of a stochastic disturbance, another error criterion is employed to determine process time delays together with the time–scaling factor that rejects the most deteriorating effect of the stochastic disturbance on parameter estimation. Simulation studies demonstrate that the proposed method is reliable against multifarious characteristics of deterministic and stochastic disturbances, and is insensitive to the selection of the sample time, which is particularly useful for discrete identification. The disadvantage of the method is that the assumed order of the Laguerre model must be greater than the actual process order, lest the unknown disturbances should become indescribable. This implies a good reduced-order model is not obtainable by this method.
    The last method applies double Laguerre models to discrete-time multiple–input/multiple–output processes. The key is to describe the process and disturbance dynamics separately by two Laguerre models involving different time-scaling factors under the same set of test data. Its advantage is to allow the Laguerre model for the process to be smaller than the actual process order, so that a good reduced-order model is obtainable. The disadvantage is that two different time-scaling factors must be properly selected such that the effects of the process and disturbance on the process output can be distinguished and accurately described. It is demonstrated that the method is reliable in that it can obtain a good reduced-order process model based on the proposed error criteria.

    Keywords: Multiple Integration, Sequential Algorithms, MIMO System Identification, Laguerre Model, Model Reduction, Unknown Disturbances

    表目錄.....................................................i 圖目錄....................................................ii 符號說明...................................................v 第一章 緒論.................................................1 1.1 研究動機與目的..........................................1 1.2 文獻回顧................................................3 1.3 章節與組織..............................................6 第二章 以多重積分為基礎之連續時間SISO系統鑑別法.................8 2.1連續系統方程之多重積分轉換式...............................8 2.2 基於兩段測試的順序式估測演算法...........................10 2.3 順序式演算法的執行......................................13 2.4 未知負載擾動的影響......................................15 2.4.1 靜態負載擾動.........................................15 2.4.2 漂移式負載擾動.......................................16 2.4.3 週期性負載擾動.......................................17 2.5 利用模型預測描述輸出量測之相稱度進行模型驗證...............17 2.6 模擬與實驗研究.........................................18 第三章 以單Laguerre模型為基礎之離散時間MIMO系統鑑別法..........33 3.1 Laguerre連續時間展開式與正交函數........................33 3.2 Laguerre離散時間展開式................................34 3.3 決定性和隨機性擾動下利用Laguerre模型的鑑別................36 3.3.1 單一輸入/單一輸出系統之鑑別............................36 3.3.2 多重輸入/多重輸出系統之鑑別............................40 3.4 階次擴增的轉移函數模型的回復.............................40 3.5 時間縮放因子與多個時延參數之決定..........................41 3.5.1 決定性擾動案例.......................................41 3.5.2 隨機性擾動案例.......................................43 3.6 模擬範例...............................................45 第四章 以雙Laguerre模型為基礎之離散時間MIMO系統鑑別法..........63 4.1 決定性和隨機性擾動下利用Laguerre模型的鑑別................63 4.1.1 單一輸入/單一輸出系統之鑑別............................63 4.1.2 多重輸入/多重輸出系統之鑑別............................67 4.2 時間縮放因子、擾動縮放因子、多個時延參數之決定與以較低階次近似 真實程序階次...........................................68 4.3 模擬範例...............................................71 第五章 結論與未來研究展望....................................92 附錄A 連續時間程序輸出響應公式的推導..........................95 附錄B 離散時間程序轉移函數的係數與Laguerre ARX模型轉移函數的係數 之關係式的推導.......................................100 參考文獻..................................................104

    [1] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp, Process Dynamics and Control, 2nd edition, John Wiley & Sons: New York, 2004.
    [2] Hsia, T. C., System Identification-Least-Squares Methods; Lexington Books: Massachusetts, 1977.
    [3] Yuwana, M. and D. E. Seborg, “A New Method for On-Line Controller Tuning,” AIChE Journal, 28, 434-440, 1982.
    [4] Söderstrom, T. and P. G. Stöica, Instrumental Variable Methods for System Identification; Springer-Verlag: Berlin, 1983.
    [5] Unbehauen, H. and G. P. Rao, Identification of Continuous Systems, Elsevier Science: Netherlands, 1987.
    [6] Åström, K. J. and T. Hägglund, Automatic Tuning of PID Controllers; NC: Instrument Society of America, Research Triangle Park, 1988.
    [7] Sagara, S. and Z. Y. Zhao, “Recursive Identification of Transfer Function Matrix in Continuous Systems via Linear Integral Filter,” International Journal of Control, 50, 457-477, 1989.
    [8] Hang, C. C., K. J. Åström, and W. K. Ho, “Relay Auto-Tuning in the Presence of Static Load Disturbance,” Automatica, 29, 563-564, 1993.
    [9] Shiu, S. J. and S. H. Hwang, “System Identification Using Open-Loop or Closed-Loop Relay Feedback,” Symposium on Computer Process Control, Taipei, 96-102, 1995.
    [10] Shen, S. H., J. S. Wu, and C. C. Yu, “Auto-Tune Identification under Load Disturbance,” Industrial & Engineering Chemical Research, 35, 1642-1651, 1996.
    [11] Shen, S. H., J. S. Wu, and C. C. Yu, “Use of Biased-Relay Feedback for System Identification,” AIChE Journal, 42, 1174-1180, 1996.
    [12] Smith, C. A. and A. B. Corripio, Principles and Practice of Automatic Process Control, 2nd Edition, John Wiley & Sons: Singapore, 1997.
    [13] Sung, S. W., I. B. Lee, and J. Lee, “New Process Identification Method for Automatic Design of PID Controllers,” Automatica, 34, 513-520, 1998.
    [14] Ljung, L., System Identification: Theory for the User, Prentice Hall: Upper Saddle River, 1999.
    [15] Wang, Q. G. and Y. Zhang, “Robust Identification of Continuous Systems with Dead-Time from Step Responses,” Automatica, 37, 377-390, 2001.
    [16] Hwang, S. H. and M. L. Lin, “A Method for Identification of Discrete Parametric Models with Unknown Orders and Delays,” Journal of the Chinese Institute of Chemical Engineers, 33, 373-388, 2002.
    [17] Hwang, S. H. and M. L. Lin, “Unbiased Identification of Continuous-Time Parametric Models Using a Time-Weighted Integral Transform,” Chemical Engineering Communications, 190, 1170-1199, 2003.
    [18] Culter, C. R. and B. L. Rammker, “Dynamic Matrix Control-a Computer Control Algorithm,” Proceedings of the Joint Automatic Control Conference, San Francisco, SP-8, 1980.
    [19] Rivera, D. E., M. Morari, and S. Skogestad, “Internal Model Control: 4. PID Controller Design,” Industrial & Engineering Chemistry Process Design and Development, 25, 252-265, 1986.
    [20] Åström, K. J. and B. Wittenmark, Adaptive Control; Addison-Wesley: MA, 1989.
    [21] Hägglund, T. and K. J. Åström, “Industrial Adaptive Controllers Based on Frequency Response Techniques,” Automatica, 27, 599-609, 1991.
    [22] Hwang, S. H., “Closed-loop Automatic Tuning of Single-Input/Single-Output Systems,” Industrial & Engineering Chemistry Research, 34, 2406-2417, 1995.
    [23] Huang, H. P., C. L. Chen, C. W. Lai, and G. B. Wang, “Auto-Tuning for Model-Based PID Controllers,” AIChE Journal, 42, 2687-2691, 1996.
    [24] Luyben, W. L. and M. L. Luyben, Essentials of Process Control, McGraw-Hill: New York, 1997.
    [25] Lin, M. L. and S. H. Hwang, “Robust Design Method for Discrete-Time Controllers with Simple Structures,” Industrial & Engineering Chemistry Research, 41, 2705-2715, 2002.
    [26] Smith, C. L., Digital Computer Process Control, Intext Educational Publishers: Scranton, 1972.
    [27] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp, Process Dynamics and Control, John Wiley & Sons: New York, 1989.
    [28] Mathew, A. V. and F. W. Fairman, “Identification in the Presence of Initial Conditions,” IEEE Transactions on Automatic Control, AC-17, 394-396, 1972.
    [29] Whitfield, A. H. and N. Messali, “Integral-Equation Approach to System Identification,” International Journal of Control, 45, 1431-1445, 1987.
    [30] Lion, P. M., “Rapid Identification of Linear and Nonlinear Systems,” Proceedings of the Joint Automatic Control Conference, Washington, 605-614, 1966.
    [31] Mathew, A. V., and F. W. Fairman, “Transfer Function Matrix Identification,” IEEE Transactions on Circuits and Systems, CAS-21, 584-588, 1974.
    [32] Diamessis, J. E., “A New Method for Determining the Parameters of Physical Systems,” Proceedings of the IEEE, 53, 205-206, 1965.
    [33] Paraskevopoulos, P. N., P. D. Sparis, and S. G. Mouroutsos, “The Fourier Series Operational Matrix of Integration,” Internal Journal of System Science, 16, 171-176, 1985.
    [34] Mohan, B. M. and K. B. Datta, “Identification via Fourier Series for a Class of Lumped and Distributed Parameter Systems”, IEEE Transactions on Circuits and Systems, 36, 1454-1458, 1989.
    [35] Garnier, H., P. Sibille, and H. L. Nguyen, “A New Bias-Compensating Least-squares Method for Continuous-Time MIMO System Identification Applied to a Laboratory-Scale Process,” Proceedings of the Third IEEE Conference on Control Applications, Glasgow, 1711-1716, 1994.
    [36] Hwang, S. H. and S. T. Lai, “Use of Two-Stage Least-Squares Algorithms for Identification of Continuous Systems with Time Delay Based on Pulse Responses,” Automatica, 40, 1561-1568, 2004.
    [37] Hang, C. C., and K. J. Åström, “Practical Aspects of PID Auto-Tuners Based on Relay Feedback,” Proceedings of IFAC Internal Symposium on Adaptive Control of Chemical Processes, Copenhagen, 153-158, 1988.
    [38] Park, J. H., S. W. Sung , and I. B. Lee, “Improved Relay Auto-Tuning with Static Load Disturbance,” Automatica, 33, 711-715, 1997.
    [39] Wang, Q. G., M. Liu, C. C. Hang, and W. Tang, “Robust Process Identification from Relay Tests in the Presence of Nonzero Initial Conditions and Disturbance,” Industrial & Engineering Chemistry Research, 45, 4063-4070, 2006.
    [40] Hwang, S. H. and L. W. Wang, “On the Identification and Model Reduction of Processes under Unknown Load Disturbances,” Industrial & Engineering Chemistry Research, 42, 1905-1913, 2003.
    [41] Hwang, S. H., H. C. Ling, and S. J. Shiu, “Robust Identification of Continuous Parametric Models Based on Multiple Sinusoidal Testing under Slow or Periodic Disturbances,” Industrial & Engineering Chemistry Research, 43, 6125-6135, 2004.
    [42] Liu, T. and F. Gao, “Robust Step-Like Identification of Low-Order Process Model under Nonzero Initial Conditions and Disturbances,” IEEE Transactions on Automatic Control, 53, 2690-2695, 2008.
    [43] Broome, P. W., “Discrete Orthonormal Sequences,” Journal of the Association for Computing Machinery, 12, 151-168, 1965.
    [44] Wahlberg, B., “System Identification Using Laguerre Models,” IEEE Transactions on Automatic Control, 36, 551-562, 1991.
    [45] Wahlberg, B., “System Identification Using Kautz Models,” IEEE Transactions on Automatic Control, 39, 1276-1282, 1994.
    [46] Wahlberg, B. and P. M. Mäkilä, “Approximation of Stable Linear Dynamical Systems Using Laguerre and Kautz Functions,” Automatica, 32, 693-708, 1996.
    [47] Heuberger, P. S. C., P. M. J. Van den Hof, and O. H. Bosgra, “A Generalized Orthonormal Basis for Linear Dynamical Systems,” IEEE Transactions on Automatic Control, 40, 451-465, 1995.
    [48] Ninness, B. and F. Gustafsson, “A Unifying Construction of Orthonomal Bases for System Identification,” IEEE Transactions on Automatic Control, 42, 515-521, 1997.
    [49] Dankers, A. and D. Westwick, “Nonlinear System Identification Using Optimally Selected Laguerre Filter Banks,” Proceedings of the 2006 American Control Conference, Minneapolis, 2369-2374, 2006.
    [50] Gunther, J. H. and R. López-Valcarce, “Blind Input, Initial State, and System Identification of SIMO Laguerre Systems,” IEEE Transactions on Signal Processing, 52, 3357-3369, 2004.
    [51] Lecchini, A. and M. Gevers, “Explicit Expression of the Parameter Bias in Identification of Laguerre Models from Step Responses,” System & Control Letters, 52, 149-165, 2004.
    [52] Ricardo J. G. B. Campello, C. do Amaral Wagner, and Favier Gérard, “A Note on the Optimal Expansion of Volterra Models Using Laguerre Functions,” Automatica, 42, 683-693, 2006.
    [53] Billings, S. A., “Identification of Non-linear Systems-A Survey,” IEE Proceedings D: Control Theory & Applications, 127, 272-285, 1980.
    [54] Doyle III, F. J., R. K. Pearson, and B. A. Ogunnaike, Identification and Control Using Volterra Models, Springer-Verlag: London, 2002.
    [55] Eykhoff, P., System Identification: Parameter and State Estimation, Wiley: Chichester, 1974.
    [56] Rung, W. J., Nonlinear System Theory: The Volterra/Wiener Approach, Johns Hopkins University Press: Baltimore, 1981.
    [57] Donoho, D. L., and I. M. Johnstone, “Ideal Spatial Adaptation by Wavelet Shrinkage,” Biometrika, 81, 425-455, 1994.
    [58] Mallat, S., “A Theory for Multi-resolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 674-693, 1989.
    [59] Strang, G. and T. Nguyen, Wavelets and Filter Banks, revised edition, Wellesley-Cambridge: Wellesley, 1998.
    [60] Wood, R. and M. W. Berry, “Terminal Composition Control of a Binary Distillation Column,” Chemical Engineering Science, 28, 1707-1717, 1973.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE