簡易檢索 / 詳目顯示

研究生: 王人弘
Wang, Jen-Hon
論文名稱: 設計及合成五圓環亞胺醣作為法布瑞氏症疾病之藥理助疊小分子
Design and synthesis of five-membered iminosugurs as pharmacalogical chaperones for Fabry disease
指導教授: 鄭偉杰
Cheng, Wei-Chieh
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 103
中文關鍵詞: 亞胺醣助疊小分子法布瑞氏症
外文關鍵詞: iminosugurs, pharmacological chaperones, Fabry disease
相關次數: 點閱:84下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 法布瑞氏症為一與X染色體相關的溶小體儲積症候群,因為缺乏溶小體內部的半乳醣水解酶而導致該水解酶的天然受質酰基鞘鞍醇三己糖(GL-3)在身體內不斷堆積在血管內皮細胞,使病人出現慢性神經疼痛,腸胃不適,眼睛混濁,血管角質瘤,擴張型心肌病等症狀.
    目前正在發展中的化學助疊小分子療法為一對法布瑞氏症及其他溶小體儲積症候群的潛力療法,利用經由設計而成的小分子在內質網內對不正常摺疊蛋白質的活性作用區域進行選擇性結合並幫助它恢復其正常的3D結構使其可以順利通過內質網蛋白質品質控管系統(ER quality control)成功地被送到溶小體內去水解已儲積過多的受質,進一步減緩病人的症狀.
    目前對法布瑞氏症助疊小分子的研究主要是以六圓環亞胺醣為主,以五圓環亞胺醣作為基底去設計助疊小分子去做系統性的研究並未被完整的建立及探討. 亞胺醣質子化之後的構形可以模擬水解酶在水解醣的過程中產生的過渡態(oxocarbonium ion).因此,我們以此做為出發點經由設計去合成不同構型的1-aminodeoxy-2,5-dihydroxymethyl-3,4-di-hydroxypyrrolidine作為骨架, 再經由快速的組合化學合成方法做不同取代基的修飾,產生出以吡咯烷為骨架的分子庫, 並檢測其對於recombinant α-galacotosidase A 及細胞內α-galacotosidase A的抑制能力. 經過初步的生物檢測後可以挑選出對酵素及細胞活性都具有較強生物活性的候選分子,當重新合成這些化合物後再做進一步的生物測試。在候選分子中,以骨架3,E6,H6,及H9等化合物對轉染α-galacotosidase A的COS7細胞突變及法布瑞氏症病人細胞具有不錯的助疊治療效果.
    經由這一系列的過程,我們成功的用快速的化學方法從大量的分子庫中找到對α-galacotosidase A有助疊效果的新穎化合物.

    Fabry disease is a X-linked lysosomal storage disorder caused by deficiency in lysosomal a-galactosidase A (α-Gal A) activity, resulting in progressive accumulation of neutral glycosphingolipids with terminal a-galactosyl residue, globotriaosylceramide (GL-3), in vascular endothelial cells. Patient with Fabry disease suffered from symptoms like chronic neuronopathic pain, gastrointestinal disturbances, angiokeratoma, cardiomyopathy, premature myocardial infarctions
    Chemical chaperone therapy was as a potent strategy to treat Fabry disease and other LSDs using a specific-active-site small molecule selectively binding to α-Gal A as chaperone for mutant enzymes that failed to maintain their proper conformation to avoid excessive degradation, increasing lysosomal trafficking and restoring cellular activity further. Currently, systematic study, design, and analysis of five-membered iminosugars-based chaperones toward α-galactosidases have not been extensively explored. Here, we synthesized galactose-like ADMDP (1-aminodeoxy-2,5-dihydroxy methyl-3,4-di-
    hydroxypyrrolidine) from cyclic nitrones as scaffolds and adopted a combinatorial approach to rapidly generate various pyrrolidine-based library with substituent diversity by amide bond formation, followed by in vitro enzyme-based inhibition screening and in vivo cell-based inhibition to develop novel five-membered pharmacological chaperones for Fabry disease instead of only enzyme-based inhibition screening to avoid false positives that lacks relevant chaperone activity. The inhibitory ability of these libraries toward α-galacotosidase A were evaluated and the screening results showed some interesting and potent hits were found. After resynthesis of these hits, scaffold 3, E6, H6 and H9 showed well-responded to mutant α-Gal-A expressing in COS7 and Fabry patient cell line with N215S mutation.
    Through our design of scaffolds and assistance of rapid diversification, and a series of bioevaluation, potent and new α-galacotosidase A chaperones could be efficiently discovered.

    摘要 I Abstract II Acknowledgement IV Table of Contents V Index of Figures VIII Index of Tables XI Index of Schemes XII Abbreviations XIII Chapter 1. Introduction I 1-1 Introduction of iminosugars I 1-1-1 Mechanism of enzymatic hydrolysis and the transition state mimics I 1-2 Applications of iminosugars 2 1-3 Introduction of lysosomal storage disease 3 1-3-1 Background of fabry disease 5 1-3-2Therapeutic approach for fabry disease 6 1-4 Motivation 8 1-4-1 Design and strategy 10 Chapter 2. Results and discussion 13 2-1 Preparation of scaffolds 1, 2 from D-xylose 13 2-1-1 Preparation of scaffolds 3, 4 from L-ribose and D-lyxose 14 2-2 Library synthesis 18 2-3 Enzyme-based inhibition screening of recombinant lysosomal α-galactosidase 20 2-4 Cell-based inhibition of lysosomal α-galactosidase 22 2-5 General procedure of resynthesis compounds 25 2-6 Cloning of lysosomal α-galactosidase A in an cloning vector 26 2-7 Mutagenesis of lysosomal α-galactosidase A 27 2-8 Cell-based chaperone assay for COS7 transfected with hGLA 30 2-9 Cell-based chaperone assay for patient lymphocyte with N215S mutant 36 2-10 Enzyme-based characterization of potential hits 38 2-11 Conclusion 41 Chapter 3. Experimental section 42 3-1 General experimental procedure 42 3-2 General procedure for preparation of libraries 1-4 42 3-3 Procedure of preliminary enzyme-based screening 42 3-4 Procedure of cell-based screening 43 3-5 Total extraction of RNA 43 3-6 RT-PCR of total RNA 44 3-7 Cloning of lysosomal α-galactosidase 45 3-8 Mutagenesis of lysosomal α-galactosidase 46 3-9 Cell culture 46 3-10 Transient transfected of COS-7 and chaperone assay 47 3-11 Procedure of intracellular activity enhancement assay for N215S patient lymphocyte 48 3-12 Procedure and experimental data 49 Chapter 4. References 60 Appendix 64

    (1) D'Alonzo, D.; Guaragna, A.; Palumbo, G., Glycomimetics at the Mirror: Medicinal Chemistry of L-Iminosugars. Current Medicinal Chemistry 2009, 16, 473-505.
    (2) Krülle, T. M.; de la Fuente, C.; Pickering, L.; Aplin, R. T.; Tsitsanou, K. E.; Zographos, S. E.; Oikonomakos, N. G.; Nash, R. J.; Griffiths, R. C.; Fleet, G. W. J., Triazole carboxylic acids as anionic sugar mimics? Inhibition of glycogen phosphorylase by a d-glucotriazole carboxylate. Tetrahedron: Asymmetry 1997, 8, 3807-3820.
    (3) Winchester, B. G., Iminosugars: from botanical curiosities to licensed drugs. Tetrahedron: Asymmetry 2009, 20, 645-651.
    (4) Meloncelli, P. J.; Gloster, T. M.; Money, V. A.; Tarling, C. A.; Davies, G. J.; Withers, S. G.; Stick, R. V., D-Glucosylated Derivatives of Isofagomine and Noeuromycin and Their Potential as Inhibitors of β-Glycoside Hydrolases. Australian Journal of Chemistry 2007, 60, 549-565.
    (5) Horne, G.; Wilson, F. X.; Tinsley, J.; Williams, D. H.; Storer, R., Iminosugars past, present and future: medicines for tomorrow. Drug Discovery Today 2011, 16, 107-118.
    (6) Tsou, E.-L.; Yeh, Y.-T.; Liang, P.-H.; Cheng, W.-C., A convenient approach toward the synthesis of enantiopure isomers of DMDP and ADMDP. Tetrahedron 2009, 65, 93-100.
    (7) Tsou, E.-L.; Chen, S.-Y.; Yang, M.-H.; Wang, S.-C.; Cheng, T.-R. R.; Cheng, W.-C., Synthesis and biological evaluation of a 2-aryl polyhydroxylated pyrrolidine alkaloid-based library. Bioorganic & Medicinal Chemistry 2008, 16, 10198-10204.
    (8) Lübke, T.; Lobel, P.; Sleat, D. E., Proteomics of the lysosome. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2009, 1793, 625-635.
    (9) Boyd, R. E.; Lee, G.; Rybczynski, P.; Benjamin, E. R.; Khanna, R.; Wustman, B. A.; Valenzano, K. J., Pharmacological Chaperones as Therapeutics for Lysosomal Storage Diseases. Journal of Medicinal Chemistry 2013, 56, 2705-2725.
    (10) Trapero, A.; Alfonso, I.; Butters, T. D.; Llebaria, A., Polyhydroxylated Bicyclic Isoureas and Guanidines Are Potent Glucocerebrosidase Inhibitors and Nanomolar Enzyme Activity Enhancers in Gaucher Cells. Journal of the American Chemical Society 2011, 133, 5474-5484.
    (11) Fan, J.-Q.; Ishii, S.; Asano, N.; Suzuki, Y., Accelerated transport and maturation of lysosomal [alpha]-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 1999, 5, 112-115.
    (12) Asano, N.; Ishii, S.; Kizu, H.; Ikeda, K.; Yasuda, K.; Kato, A.; Martin, O. R.; Fan, J.-Q., In vitro inhibition and intracellular enhancement of lysosomal α-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. European Journal of Biochemistry 2000, 267, 4179-4186.
    (13) Kato, A.; Yamashita, Y.; Nakagawa, S.; Koike, Y.; Adachi, I.; Hollinshead, J.; Nash, R. J.; Ikeda, K.; Asano, N., 2,5-Dideoxy-2,5-imino-d-altritol as a new class of pharmacological chaperone for Fabry disease. Bioorganic & Medicinal Chemistry 2010, 18, 3790-3794.
    (14) Guce, Abigail I.; Clark, Nathaniel E.; Rogich, Jerome J.; Garman, Scott C., The Molecular Basis of Pharmacological Chaperoning in Human α-Galactosidase. Chemistry & Biology 2011, 18, 1521-1526.
    (15) Cheng, T.-J. R.; Chan, T.-H.; Tsou, E.-L.; Chang, S.-Y.; Yun, W.-Y.; Yang, P.-J.; Wu, Y.-T.; Cheng, W.-C., From Natural Product-Inspired Pyrrolidine Scaffolds to the Development of New Human Golgi α-Mannosidase II Inhibitors. Chemistry – An Asian Journal 2013, 8, 2600-2604.
    (16) Cheng, W.-C.; Weng, C.-Y.; Yun, W.-Y.; Chang, S.-Y.; Lin, Y.-C.; Tsai, F.-J.; Huang, F.-Y.; Chen, Y.-R., Rapid modifications of N-substitution in iminosugars: Development of new β-glucocerebrosidase inhibitors and pharmacological chaperones for Gaucher disease.
    Bioorganic & Medicinal Chemistry 2013, 21, 5021-5028.
    (17) Schitter, G.; Scheucher, E.; Steiner, A. J.; Stütz, A. E.; Thonhofer, M.; Tarling, C. A.; Withers, S. G.; Wicki, J.; Fantur, K.; Paschke, E.; Mahuran, D. J.; Rigat, B. A.; Tropak, M.; Wrodnigg, T. M., Synthesis of lipophilic 1-deoxygalactonojirimycin derivatives as D-galactosidase inhibitors. Beilstein Journal of Organic Chemistry 2010, 6, 21.
    (18) Schitter, G.; Steiner, A. J.; Pototschnig, G.; Scheucher, E.; Thonhofer, M.; Tarling, C. A.; Withers, S. G.; Fantur, K.; Paschke, E.; Mahuran, D. J.; Rigat, B. A.; Tropak, M. B.; Illaszewicz, C.; Saf, R.; Stütz, A. E.; Wrodnigg, T. M., Fluorous Iminoalditols: A New Family of Glycosidase Inhibitors and Pharmacological Chaperones. ChemBioChem 2010, 11, 2026-2033.
    (19) Barker, R.; Fletcher, H. G., 2,3,5-Tri-O-benzyl-D-ribosyl and -L-arabinosyl Bromides. The Journal of Organic Chemistry 1961, 26, 4605-4609.
    (20) Li, Y.-X.; Huang, M.-H.; Yamashita, Y.; Kato, A.; Jia, Y.-M.; Wang, W.-B.; Fleet, G. W. J.; Nash, R. J.; Yu, C.-Y., l-DMDP, l-homoDMDP and their C-3 fluorinated derivatives: synthesis and glycosidase-inhibition. Organic & Biomolecular Chemistry 2011, 9, 3405-3414.
    (21) Lukas, J.; Giese, A.-K.; Markoff, A.; Grittner, U.; Kolodny, E.; Mascher, H.; Lackner, K. J.; Meyer, W.; Wree, P.; Saviouk, V.; Rolfs, A., Functional Characterisation of Alpha-Galactosidase A Mutations as a Basis for a New Classification System in Fabry Disease. PLoS Genet 2013, 9, e1003632.
    (22) Takai, T.; Higaki, K.; Aguilar-Moncayo, M.; Mena-Barragan, T.; Hirano, Y.; Yura, K.; Yu, L.; Ninomiya, H.; Garcia-Moreno, M. I.; Sakakibara, Y.; Ohno, K.; Nanba, E.; Ortiz Mellet, C.; Garcia Fernandez, J. M.; Suzuki, Y., A Bicyclic 1-Deoxygalactonojirimycin Derivative as a Novel Pharmacological Chaperone for GM1 Gangliosidosis. Mol Ther 2013, 21, 526-532.
    (23) Benjamin, E. R.; Flanagan, J. J.; Schilling, A.; Chang, H. H.; Agarwal, L.; Katz, E.; Wu, X.; Pine, C.; Wustman, B.; Desnick, R. J.; Lockhart, D. J.; Valenzano, K. J., The pharmacological chaperone 1-deoxygalactonojirimycin increases α-galactosidase A levels in Fabry patient cell lines. J Inherit Metab Dis 2009, 32, 424-440.

    下載圖示 校內:2017-09-11公開
    校外:2018-09-11公開
    QR CODE