簡易檢索 / 詳目顯示

研究生: 黃鈺婷
Huang, Yu-Ting
論文名稱: ABAQUS 3D 深開挖建構:高雄黏土案例研究
ABAQUS 3D Deep Excavation Modeling:Kaohsiung Clay Case Research
指導教授: 洪瀞
Hung, Ching
共同指導教授: 熊彬成
Hsiung, Bin-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 67
中文關鍵詞: 深開挖高雄黏土ABAQUS 3D土壤模式網格密度
外文關鍵詞: Deep excavation, Kaohsiung clay, ABAQUS 3D, Constitutive models, Grid density
相關次數: 點閱:219下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在深開挖研究中,黏土層對於工程的影響一直被視為重要課題之一,然而過去台灣的深開挖工程研究大多以大台北地區黏土層為背景,鮮少有針對高雄地區黏土層中之深開挖進行探討,然而隨著近年來高雄地區之發展,都市內的開發區域也漸漸向外擴增,含有較厚黏土層的深開挖工址也較常出現了,故本研究選擇一位於高雄市鳳山區之開挖作為研究案例,其開挖區內包含6公尺深黏土層,使用ABAQUS有限元素軟體作為分析工具,並以不同土壤模型與網格密度設定進行模擬分析,再與現地監測資料作比較。
    研究結果顯示,以莫爾-庫倫模式(Mohr-Coulomb Model,MC)分析砂土層,並以Es1=2800N作為所有砂土層之彈性模數時,由於土壤勁度參數於數值模擬輸入為固定值,無法如土壤實際行為一般,依土壤應變大小而改變,可能導致較深度砂土層之土壤勁度被低估,使壁體變位分析過大,無法符合現地觀測情形。而黏土層改以修正劍橋模式(Modified Cam-Clay Model,MCC)作模擬時,由於本案例之開挖深度較淺,黏土未達到其降伏強度,故無法從數值模擬結果,顯現MCC模式於模擬黏土層之壁體變形時之優勢。此外,網格的不同假設,並未造成分析結果的明顯差異。

    Impacts on engineering performances of deep excavations in clay indeed attract attentions. However, deep excavations in Taipei clay are mainly selected as the background in previous researches but not for Kaohsiung. However, due to the development of the city, more and more cases in Kaohsiung were found that excavations have to be conducted in clay too. Therefore, an excavation delivered in 6-m thick clay in Kaohsiung is selected for this study and the objective of this study is first to evaluate the performance of two constitutive models, Mohr - Coulomb model and Modified Cam-Clay model, for examing wall displacements induced by deep excavation in Kaohsiung clay. In addition, the effect of different grid density setting would be considered in this study. Then a three-dimensional finite element (FE) analysis is conducted. FE analysis results indicate that the use of the Mohr - Coulomb model with Es1=2800N in all sand layers cannot predict good wall defections It is likely that both models have constant soil stiffness, can’t have strain- dependent stiffness which is inconsistent with reality of the soil. It is anticipated to be the reason leading to the difference. The Modified Cam-Clay model which use to simulate the clay layers cannot perform better. Due to the shallow excavation depth of this case, the soil deformation is limited so the clay did not yield yet. The difference caused by different definition of yielding condition of two models thus can’t be seen. Furthermore, different assumptions of the grid do not cause significant differences in the analysis results.

    摘要 I Extended Abstract II ABAQUS 3D Deep Excavation Modeling:Kaohsiung Clay Case Research II 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1研究動機與目的 1 1.2研究方法與流程 2 第二章 文獻回顧 4 2.1 深開挖工程引致擋土壁體側向變形之行為 4 2.1.1 擋土壁體側向變形之特性 4 2.1.2 擋土壁體側向變形之影響因素 8 2.2 ABAQUS 程式介紹 14 第三章 土壤模型及案例介紹 15 3.1 土壤模型介紹 15 3.1.1莫爾-庫倫模式(Mohr-Coulomb Model,MC) 15 3.1.2修正劍橋模式(Modified Cam-Clay Model,MCC) 20 3.2案例介紹 24 3.2.1工程概敘 24 3.2.2地質條件 26 第四章 開挖案例模擬與結果討論 28 4.1分析參數之決定 28 4.1.1土壤參數 28 4.1.2結構參數 36 4.2開挖模擬之條件設定 40 4.2.1開挖邊界 40 4.2.3模擬之施工步驟 42 4.2.4介面元素設定 43 4.3網格密度設定 45 4.4 不同假設條件下之擋土壁體變形結果比較 47 4.4.1 不同土壤模型對擋土壁體變形之影響 47 4.4.2不同網格密度下對擋土壁體變形之影響與運算效率比較 54 第五章 結論與建議 56 5.1結論 56 5.2建議 57 參考文獻 58 附錄 66

    1.吳沛軫、王俊明、彭嚴儒 (1997),「連續壁變形行為探討」,第七屆大地工程學術研究討論會,pp.601-608
    2.林玉英、楊秦、張敏儀、鐘滿祥 (1970),「台北盆地上層土壤(松山層剪力波速初期測定結果及其在結構耐振設計上之意義之初步研究」,中央研究院地球物理科學研究所籌備處研究報告,台北
    3.林奕宏 (2016),「以反算分析探討深開挖分析之土壤參數」,碩士論文,國立台灣科技大學營建工程研究所,台北
    4.胡邵敏 (1992),「深開挖工程鄰產保護設計與施工」,地工技術,第40期,pp.35-61
    5.秦繼孔 (2012),「台北粉土質粘土彈粘塑性應力應變行為之研究」,博士論文,國立台灣科技大學營建工程研究所,台北。
    國立台灣科技大學營建工程研究所,台北
    6.廖瑞堂 (1996),「逆打深開挖之行為研究」,國立台灣科技大學,博士論文
    7.歐章煜 (2017),「進階深開挖工程分析與設計」,科技圖書,台北
    8.歐章煜(2002),「深開挖工程-分析設計理論與實務」,科技圖書,台北
    9.謝百鈎 (1999),「黏土層開挖引致地盤移動之預測」,博士論文,國立台灣科技大學營建工程研究所,台北
    10.A. Kullingsjö (2009). "Effects of deep excavations in soft clay on the immediate surroundings." the 17th International Conference on Soil Mechanics and Geotechnical Engineering
    11.ABAQUS (2002). ABAQUS User’s Manual, Simulia, Providence, RI
    12.Addenbrooke T. I., Potts D.M. and Puzrin A. M. (1997). “The influence of pre-failure soil stiffness on the numerical analysis of tunnel construction.” Journal of Geotechnique, Vol 47, No.3, pp.693-712.
    13.Bolton M. D. and Lau C. K. (1993)."Vertical bearing capacity factors for circular and strip footings on Mohr–Coulomb soil." Canadian Geotechnical Journal, Vol. 30, No.6, pp.1024-1033
    14.Bolton, M. D. (1986). “The strength and dilatancy of sands.” Geotechnique, Vol. 36, No.1, pp.65-78
    15.Bowles, J. E. (1986). Foundation Analysis and Design, 4th Ed, McgrawHill Book Company, New York, U. S. A.
    16.Brinkgreve, R. B. J. (2004). PLAXIS Manual 8.2, Plaxis bv,Netherlands
    17.Burland, J. B. (1965). “The yielding and dilation of clay.” Geotechnique, Vol. 15, pp.211-214.

    18.Cerato A. B. and Lutenegger A. J. (2007). "Scale Effects of Shallow Foundation Bearing Capacity on Granular Material." Journal of Geotechnical Engineering, Vol. 133, No.10, pp. 1192-1202
    19.Clausen, J., Damkilde, L., and Andersen, L. (2006). “Efficient return algorithms forassociated plasticity with multiple yield planes.” International Journal for Numerical Methods in Engineering, Vol. 66, No.6, pp.1036-1059
    20.Clausen, J., Damkilde, L., and Andersen, L. (2007). “An efficient return algorithm for nonassociated plasticity with linear yield criteria in principal stress space.” Computers and Structures, Vol. 85, No. 23-24, pp.1795-1807
    21.Clough, G. W. and Hansen, L. A. (1981). “Clay anisotropy and braced wall behavior.” Journal of Geotechnical Engineering Division, ASCE, Vol. 107, No.7, pp.893-913
    22.Clough, G. W. and O'Rourke, T. D. (1990). “Construction induced movements of in-situ walls.” Proceedings, Design and Performance of Earth Retainings Structure, ASCE Special Conference, Ithaca, New York, pp.439-470
    23.Das, B. M. (1984). Principles of Foundation Engineering, Brook/Cole Engineering Division, Monterey, California, U. S. A.
    24.Dong Y. P. (2014). “Advanced Finite Element Analysis of Deep Excavation Case Histories.” Ph.D. Dissertation, University of Oxford, UK.
    25.Dong Y. P., Burd H. J., Houlsby G. T. (2016). "Finite-element analysis of a deep excavation case history." Géotechnique, Vol. 66, pp.1-15
    26.Dong Y. P., Burd H., Houlsby G., Hou Y. (2014).”Advanced finite element analysis of a complex deep excavation case history in Shanghai.” Frontiers of Structural and Civil Engineering , Vol. 8, Issue 1, pp. 93-100
    27.Dong Y. P., Burd H., Houlsby G., Xu Z. (2013).”3D FEM Modelling of a Deep Excavation Case Considering Small-Strain Stiffness of Soil and Thermal Shrinkage of Concrete.” Proceedings of Seventh International Conference on Case Histories in Geotechnical Engineering
    28.Dormieux L. and Pecker A. (1995). "Seismic Bearing Capacity of Foundation on Cohesionless Soil." Journal of Geotechnical Engineering, Vol. 121, No.3, pp. 300-303
    29.Helwany, S. (2007). Applied Soil Mechanics with ABAQUS Application, John Wiley & Sons, Inc, Hoboken, New Jersey.
    30.Hou Y. M. ,. Wang J. H, Zhang L. L. (2009)."Finite-element modeling of a complex deep excavation in Shanghai." Acta Geotechnica, Vol. 4,
    pp.7-16

    31.Hsieh P. G. and Ou C. Y. (1998). “Shape of ground surface settlement profiles caused by excavation.” Canadian Geotechnical Journal, Vol. 35, No.6, pp.1004-1017
    32.Hsiung B. C. (2008).” A case study on the behaviour of a deep excavation in sand.” Computers and Geotechnics, Vol 36, pp.665-675
    33.Hsiung B. C., Yang K. H., Aila W., Hung C. (2016).”Three-dimensional effects of a deep excavation on wall deflections in loose to medium dense sands.” Computers and Geotechnics, Vol 80, pp.138-151
    34.Hsiung, B. C. (2002) “Engineering Performance of Deep Excavation in Taipei”, PhD Dissertation, University of Bristol, UK
    35.Huang, Z. H., Zhang, L. L., Cheng, S. Y., Zhang, J. and Xia, X. H. (2015). “Back-analysis and parameter identification for deep excavation based on pareto multiobjective optimization.” Journal of Aerospace Engineering, ASCE, Vol. 28, No.6, A4014007
    36.Hung C., Ling H. I., Kaliakin V. N. (2014).”Finite Element Simulation of Deep Excavation Failures.” Transportation Infrastructure Geotechnology, pp.326-345
    37.Jaky, J. (1944). “The coefficient of earth pressure at rest.” Journal of Society of Hungarian Architects and Engineers, Vol. 78, No.22,
    pp.355-358

    38.Janbu N. (1963). “Soil compressibility as determined by oedometer and triaxial tests.” Proceedings of European Conference on Soil Mechanics and Foundation Engineering (ECSMFE), Wiesbaden, Vol. 1, pp.19-25
    39.Khoiri, M. and Ou, C. Y. (2013). “Evaluation of deformation parameter for deep excavation in sand through case histories.” Computers and Geotechnics, Vol. 47, pp.57-67
    40.Ladd, C. C., Foote, R., Ishihara, K., Schlosser, F. and Poulous, H. G. (1977).”Stress-deformation and strength characteristics” Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp. 421-494
    41.Lim, A., Ou, C. Y. and Hsieh, B. G. (2010). “Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions.” Journal of GeoEnginerring, Vol. 5, No.1, pp. 9-20
    42.Lim, A., Ou, C. Y. and Teng, F. C. (2015). “The influence of soil stress paths in deformation analysis of deep excavation under undrained conditions.” Acta Geotechnica.
    43.Mana A. I. and Glough G. W. (1981). “Prediction of movements for braced cuts in clay.”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. 6, pp. 759-777

    44.Masuda, T., Einstein, H. H. and Mitachi, T. (1994). “Prediction of lateral deflection of diaphragm wall in deep excavations.” Journal of Geotechnical Engineering, Proceeding of Japan Society of Civil Engineers, No.505, Ⅲ-29, pp.19-20
    45.Navarro, V., Candel, M., Barenca, A., Yustres, A., and Garcia, B. (2007).“Optimisation procedure for choosing cam clay parameters.” Computers and Geotechnics, Vol.34, No.6, pp.524-531
    46.Nishanthan, R., Liyanapathirana, S., and Leo, C. J. (2014). “Modelling issues in simulation of deep excavations.” Australian Geomechanics Journal, Vol. 49, No.1, pp.91-103
    47.Orazalin Z. Y., Whittle A. J., and Olsen M. B. (2015).” Three-Dimensional Analyses of Excavation Support System for the Stata Center Basement on the MIT Campus” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 141, No.7, pp.1-14
    48.Ou C. Y., Hsieh, P. G. and Chiou, D. C. (1993). “Characteristics of ground surface settlement during excavation.” Canadian Geotechnical Journal, Vol. 30, No.5, pp.758-767
    49.Ou, C. Y. and Lai, C. H. (1994). ‘Finite-element analysis of deep excavation in layered sandy and clayey soil deposits.” Canadian Geotecnical Journal, Vol. 31, N0. 2, pp. 204-214

    50.Potts D. M., Zdravkovic L. (1999). Finite element analysis in geotechnical engineering: theory, Thomas Telford, London.
    51.Rouainia M., Elia G., Panayides S., Scott P. (2017). “The strength and dilatancy of sands.” Geotechnique, Vol. 143, No.5, pp.1-13
    52.Schofield, A. and Wroth, P. (1968). Critical State Soil Mechanics,
    USA.
    53.Whittle A. J., Corral G., Jen L. C., and Rawnsley R. P. (2014).” Prediction and Performance of Deep Excavations for Courthouse Station, Boston.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 141, No.4, pp.1-13
    54.Zdravkovic´ L., Potts D. M. and St John H. D. (2005). “Modelling of a 3D excavation in finite element analysis.” Ge´otechnique, Vol. 55, No.7, pp.497-513
    55.Zentar, R., Hicher, P. Y., and Moulin, G. (2001). “Identification of soil parameters by inverse analysis.” Computers and Geotechnics, Vol. 28, No.2, pp.129-144.
    56.Zhao B. D., Zhang L. L., Jeng D. S., Wang J. H., Chen J. J. (2014). ” Inverse Analysis of Deep Excavation Using Differential Evolution Algorithm.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 39, pp.115-134

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE