簡易檢索 / 詳目顯示

研究生: 任靜宜
Jen, Ching-Yi
論文名稱: 共軛類對有限群的影響
On the influence of conjugacy class in finite groups
指導教授: 黃世昌
Huang, Shih-Chang
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 32
中文關鍵詞: 共軛類大小質數次方指數元素q-Baer 群normal p-complement
外文關鍵詞: conjugacy class size, element of prime-power index, q-Baer group, normal p-complement
相關次數: 點閱:176下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們列出一些與元素的指數(index)相關的結果。首先是和指數為質數次方的元素有關的結果,包含單一性(simplicity),normal p-complement 的存在性,以及一個元素擁有質數次方的指數的充分條件。接著我們舉一些例子說明滿足 order 為質數次方的元素都有質數次方指數這種條件的群還有 q-Baer 群。最後列出由元素的指數所推導出的和群的可解性(solubility)有關的結果。

    In this thesis, we show some results about index of an element. We first show results about elements of prime-power indices, which include simplicity, the existence of normal p-complements, and sufficient conditions for an element to have prime-power index. Next, we give some examples of groups such that elements of prime-power order have prime-power indices, and q-Baer groups. The last part, we show some results that the indices of elements in a group can imply the solubility of it.

    1 Introduction 1 2 De finitions and Basic Results 3 2.1 De finitions 3 2.2 Basic Results 4 3 Elements of Prime-power Indices 7 3.1 Nonsimplicity 7 3.2 Normal p-complement 8 3.3 Sufficient Conditions for Elements to Have Prime -Power Index 14 4 Elements of Prime-power Order Having Prime-power Indices and the q-Baer Group 16 4.1 Characterisation by Baer 16 4.2 q-Baer Group 17 5 Solubility 20 5.1 Index Not Divisible by p^2 20 5.2 Square-free Index 24 Notation 27 Index 29 Bibliography 30

    [1] R. Baer(1953), Group elements of prime power index, Trans. Amer. Math. Soc.,
    75:20-47.
    [2] Y. Berkovich and L. Kazarin(2005), Indices of elements and normal structure of
    finite groups, J. Algebra, 283(2):564-583.
    [3] W. Burnside(1904), On groups of order paqb, Proc. Lond. Math. Soc., 2:388-392.
    [4] A. R. Camina(1972), Arithmetical conditions on the conjugacy class numbers of a
    finite group, J. London Math. Soc. (2), 5:127-132.
    [5] A. R. Camina and R. D. Camina(1998), Implications of conjugacy class size, J.
    Group Theory, 1(3):257-269.
    [6] A. R. Camina and R. D. Camina(2006), Recognising nilpotent groups, J. Algebra,
    300(1):16-24.
    [7] A. R. Camina and R. D. Camina(2011), The influence of conjugacy class sizes on
    the structure of finite groups: a survey, Asian-European J. Math. 4, 559-588.
    [8] D. Chillag and M. Herzog(1990), On the length of the conjugacy classes of fi nite
    groups, J. Algebra, 131(1):110-125.
    [9] A. R. Camina, P. Shumyatsky, and C. Sica(2010), On elements of prime-power
    index in finite groups, J. Algebra, 323(2):522-525.
    [10] J. Cossey and Y. Wang(1999), Remarks on the length of conjugacy classes of fi nite
    groups, Comm. Algebra, 27(9):4347-4353.
    [11] S. Dol and M. S. Lucido(2001), Finite groups in which p0-classes have q0-length,
    Israel J. Math., 122:93-115.
    [12] B. Fein, W. M.Kantor, and M. Schacher(1981), Relative Brauer groups, II. J. Reine
    Angew. Math., 328:39-57.
    [13] D. Gorenstein(1968), Finite Groups, New York.
    [14] D. Gorenstein(1982), Finite simple groups, New York and London.
    [15] T. W. Hungerford(1974), Algebra, Springer-Verlag New York.
    [16] N. It^o(1953), On finite groups with given conjugate types. I, Nagoya Math. J.,
    6:17-28.
    [17] N. It^o(1970), On finite groups with given conjugate types. II, Osaka J. Math.,
    7:231-251.
    [18] L. S. Kazarin(1990), Burnside's p^a -lemma, Mat. Zametki, 48(2):45-48, 158.
    [19] S. Li(1996), Finite groups with exactly two class lengths of elements of prime power
    order, Arch. Math. (Basel), 67(2):100-105.
    [20] S. Li(1999), On the class length of elements of prime power order in fi nite groups,
    Guangxi Sci., 6(1):12-13.
    [21] X. Liu, Y. Wang, and H. Wei(2005), Notes on the length of conjugacy classes of
    fi nite groups, J. Pure Appl. Algebra, 196(1):111-117.
    [22] G. Qian and Y. Wang(2014), On conjugacy class sizes and character degrees of
    finite groups, J. Algebra Appl., 13.
    [23] B. Steinberg(2009), Representation theory of fi nite groups, School of Mathematics
    and Statistics, Carleton University.
    [24] M. L. Sylow(1872), Th eor emes sur les groupes de substitutions, Math. Ann.,
    5(4):584-594.
    [25] B. A. F. Wehrfritz(1999), Finite Groups: a second course on group theory, World
    Scienti c Publishing Co. Pte. Ltd.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE