| 研究生: |
任靜宜 Jen, Ching-Yi |
|---|---|
| 論文名稱: |
共軛類對有限群的影響 On the influence of conjugacy class in finite groups |
| 指導教授: |
黃世昌
Huang, Shih-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 共軛類大小 、質數次方指數元素 、q-Baer 群 、normal p-complement |
| 外文關鍵詞: | conjugacy class size, element of prime-power index, q-Baer group, normal p-complement |
| 相關次數: | 點閱:176 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們列出一些與元素的指數(index)相關的結果。首先是和指數為質數次方的元素有關的結果,包含單一性(simplicity),normal p-complement 的存在性,以及一個元素擁有質數次方的指數的充分條件。接著我們舉一些例子說明滿足 order 為質數次方的元素都有質數次方指數這種條件的群還有 q-Baer 群。最後列出由元素的指數所推導出的和群的可解性(solubility)有關的結果。
In this thesis, we show some results about index of an element. We first show results about elements of prime-power indices, which include simplicity, the existence of normal p-complements, and sufficient conditions for an element to have prime-power index. Next, we give some examples of groups such that elements of prime-power order have prime-power indices, and q-Baer groups. The last part, we show some results that the indices of elements in a group can imply the solubility of it.
[1] R. Baer(1953), Group elements of prime power index, Trans. Amer. Math. Soc.,
75:20-47.
[2] Y. Berkovich and L. Kazarin(2005), Indices of elements and normal structure of
finite groups, J. Algebra, 283(2):564-583.
[3] W. Burnside(1904), On groups of order paqb, Proc. Lond. Math. Soc., 2:388-392.
[4] A. R. Camina(1972), Arithmetical conditions on the conjugacy class numbers of a
finite group, J. London Math. Soc. (2), 5:127-132.
[5] A. R. Camina and R. D. Camina(1998), Implications of conjugacy class size, J.
Group Theory, 1(3):257-269.
[6] A. R. Camina and R. D. Camina(2006), Recognising nilpotent groups, J. Algebra,
300(1):16-24.
[7] A. R. Camina and R. D. Camina(2011), The influence of conjugacy class sizes on
the structure of finite groups: a survey, Asian-European J. Math. 4, 559-588.
[8] D. Chillag and M. Herzog(1990), On the length of the conjugacy classes of fi nite
groups, J. Algebra, 131(1):110-125.
[9] A. R. Camina, P. Shumyatsky, and C. Sica(2010), On elements of prime-power
index in finite groups, J. Algebra, 323(2):522-525.
[10] J. Cossey and Y. Wang(1999), Remarks on the length of conjugacy classes of fi nite
groups, Comm. Algebra, 27(9):4347-4353.
[11] S. Dol and M. S. Lucido(2001), Finite groups in which p0-classes have q0-length,
Israel J. Math., 122:93-115.
[12] B. Fein, W. M.Kantor, and M. Schacher(1981), Relative Brauer groups, II. J. Reine
Angew. Math., 328:39-57.
[13] D. Gorenstein(1968), Finite Groups, New York.
[14] D. Gorenstein(1982), Finite simple groups, New York and London.
[15] T. W. Hungerford(1974), Algebra, Springer-Verlag New York.
[16] N. It^o(1953), On finite groups with given conjugate types. I, Nagoya Math. J.,
6:17-28.
[17] N. It^o(1970), On finite groups with given conjugate types. II, Osaka J. Math.,
7:231-251.
[18] L. S. Kazarin(1990), Burnside's p^a -lemma, Mat. Zametki, 48(2):45-48, 158.
[19] S. Li(1996), Finite groups with exactly two class lengths of elements of prime power
order, Arch. Math. (Basel), 67(2):100-105.
[20] S. Li(1999), On the class length of elements of prime power order in fi nite groups,
Guangxi Sci., 6(1):12-13.
[21] X. Liu, Y. Wang, and H. Wei(2005), Notes on the length of conjugacy classes of
fi nite groups, J. Pure Appl. Algebra, 196(1):111-117.
[22] G. Qian and Y. Wang(2014), On conjugacy class sizes and character degrees of
finite groups, J. Algebra Appl., 13.
[23] B. Steinberg(2009), Representation theory of fi nite groups, School of Mathematics
and Statistics, Carleton University.
[24] M. L. Sylow(1872), Th eor emes sur les groupes de substitutions, Math. Ann.,
5(4):584-594.
[25] B. A. F. Wehrfritz(1999), Finite Groups: a second course on group theory, World
Scienti c Publishing Co. Pte. Ltd.