簡易檢索 / 詳目顯示

研究生: 陳柏先
Chen, Po-Hsien
論文名稱: 具有壓電材料之複合層板振動分析
Vibration analysis of Midlin sandwich Plate With Piezoelectric structure
指導教授: 王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 81
中文關鍵詞: 有限元素壓電複合層板頻率
外文關鍵詞: piezoelectric, finite element, plate, frequencies
相關次數: 點閱:121下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本文主要利用有限元素法分析壓電三明治Mindlin板結構的自由振動特性;此結構分為上層下層為壓電材料,中間層一種的兩種不同的材料所組成。
    本文運用Mindlin板理論定義位移、應變與應力,計算出單層板的應變能及動能,再以漢米爾頓原理求得單層Mindlin板的靜態平衡方程式,使用靜態的運動方程式推導出其位移場之解並表示成形狀函數(shape function)的形式。由應變能及位能找出質量矩陣及剛性矩陣,進而利用Lagrange’s equation將應變能及動能代入得到單層方板元素的運動方程式,然後依不同的邊界條件將元素結合,解出系統的模態頻率。進一步定義壓電三明治板的位移、應變,求出其質量矩陣及剛性矩陣和靜態運動方程式還有三明治Mindlin板的位移場通解,一樣利用Lagrange’s equation求得其模態頻率。最後加入適當電壓求其壓電三明治板整體位移。最後利用回授控制設計於抑制此結構的振動。

    ABSTRACT

    This study presents natural frequencies and vibration control of rectangular plate with single-layered、sandwich plate with piezoelectric by Finite Element Method.
    Based on Mindlin’s plate theory, the displacements, strains and stresses of single-layered and sandwich plate can be defined to calculate strain energy and kinetic energy. The governing equation are formulated via the Hamilton’s principle. The displacements solved from static equilibrium equations are used as shape functions of one element. The Finite Element Method is employed to obtain the natural frequencies of the entire plate , and compare with analytic solution.
    Then , we provide a constant voltage to show the displacement via its
    static equilibrium equations. At least ,we use the vibration control system to design for investigating the displacement of the structure.

    目錄 摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究範圍 7 第二章 單層Mindlin板之運動方程式 8 2-1 單層Mindlin板之應變與應力 10 2-2 單層Mindlin板之應變能與動能 11 2-3 單層Mindlin板之平衡方程式與邊界條件 13 2-4 單層Mindlin板之位移場解及其Shape Function 15 2-5 單層Mindlin板元素的質量矩陣及剛性矩陣 20 2-6 有限元素法用於單層Mindlin板之準確性分析 22 第三章 壓電三明治板之運動方程式 29 3-1 壓電三明治板之應變與應力 29 3-2 壓電三明治板之電焓與動能 33 3-3 壓電三明治板之運動方程式 36 第四章 壓電三明治板之振動分析 41 4-1壓電三明治板之位移場解 41 4-2壓電三明治板位移場解之矩陣形式及其形狀函數…………… 47 4-3壓電三明治板位移場解的質量矩陣及剛性矩陣 48 4-4有限元素用於壓電三明治板之振動分析 49 第五章 壓電三明治板之位移變形分析 53 5-1壓電三明治板之位移變形分析 53 5-2回授控制分析……………………………………………………..54 5-3問題討論…………………………………………………………..56 第六章 總結與建議…………………………………………………….. 62 6-1結論………………………………………………………………. 62 6-2建議………………………………………………………………..63 參考文獻 64 附錄A 69 附錄B 70 附錄C 72 附錄D 74 表目錄 表3-1 四邊邊界條件為固定等厚度Mindlin平板在取不同元素下之 自然振動頻率…………………………………………………... 27 表4-1四邊固定條件之等厚度三明治壓電板取不同元素之自然振動 頻率,及與正確解之相對誤差比較……………………………51 圖目錄 圖2-1 單層Mindlin方板的結構及其座標定義示意圖……………. 25 圖2-2 板的橫截面每單位長度之正向力、剪切力、彎矩及扭矩 之示意圖……………………………………………………… 25 圖2-3單一元素取樣點方式及樣點座標…………………………… 26 圖2-4單層模態誤差趨勢圖………………………………………… 28 圖3-1壓電三明治板示意圖………………………………………… 39 圖3-2 壓電三明治板各層座標示意圖………………………………40 圖4-1壓電三明治板模態誤差趨勢圖……………………………….52 圖5-1動態阻尼控制示意圖………………………………………….57 圖5-2以有限元素分析,壓電三明治板沿x軸方向之位移狀態….58 圖5-3以有限元素分析,壓電三明治板沿y軸方向之位移狀態….58 圖5-4給一 ,受力點位於板正中央, , 在Z向的位移變化情形………………………………………59 圖5-5取 ,給一 ,受力點位於板正中央 , ,在外力去除之後,在Z向的位移變化收斂情形……59 圖5-6給一 ,受力點位於板正中央, ,在X向的位移變化情形……………………………………60 圖5-7取 ,給一 ,受力點位於板正中央 , ,在外力去除之後,在Y向的位移變化收斂情形 …60 圖5-8給一 ,受力點位於板正中央, ,在Y向的位移變化情形………………………………………61 圖5-9取 ,給一 ,受力點位於板正中央, ,在外力去除之後,在Y向的位移變化收斂情形。…61

    參考文獻

    1.R. D. Mindlin, 1951, " Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates," Journal of Application Mechanics, Vol.18, pp. 31-38.
    2.E. Reissner and Y. Stavsky, 1961, " Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates”, "Journal of Application Mechanics”, Vol.28, pp. 402-408.
    3.E. Reissner, 1945, " The Effect of Transverse Shear Deformation on the Bending of Elastic Plates, "Journal of Applied Mechanics, Vol. 12, pp.A69-77
    4.P. C. Yang, C. H. Norris and Y. Stavsky, 1966 , “Elastic Wave Propagation in Heterogeneous Plates,” International Journal of Solids and Structures, Vol. 2, pp. 665-684.
    5.J. M. Whitney and N. J. Pagano, 1970, “Shear Deformation in Heterogeneous Anisotropic Plates,” Journal of Applied Mechanics, Vol. 37, pp. 1031-1036.
    6.R. D. Mindlin, A. Schacknow and H. Deresiewicz, 1956, “Flexural Vibration of Rectangular Plates,” Journal of Applied Mechanics, Vol. 23, pp. 431-436.
    7.J. N. Reddy and N. D. Phan, 1985, “Stability and Vibration of Isotropic, Orthotropic and Laminated Plates According to a Higher-order Shear Deformation Theory,” Journal of Sound and Vibration, Vol. 98, pp. 157-170.
    8.N. D. Phan and J. N. Reddy, 1985, “Analysis of Laminated Composite Plates Using a Higher-Order Shear Deformation Theory,” Journal of Numerical Methods in Engineering, Vol. 21, pp. 2201-2219.
    9.A. A. Khdeir, 1988, “Free Vibration and Buckling of Symmetric Cross-Ply Laminated Plates by an Exact Method,” Journal of Sound and Vibration, Vol. 126, No. 3, pp. 447-461.
    10.Aksu,G.(1984), ree vibration analysis of rectangular plates with cutout allowing for transverse shear deformation and rotary. Earthquake Engineering for Structural Dynamics, 12(5),pp709-714.
    11.N. S. Putcha and J. N. Reddy, 1986, “Stability and Natural Vibration Analysis of Laminated Plates by Using a Mixed Element Based on Refined Plate Theory,” Journal of Sound and Vibration, Vol. 104, pp. 285-300.
    12.A. K. Noor, 1973, “Free Vibrations of Multilayered Composite Plates,” AIAA Journal, Vol. 11, pp. 1038-1039.
    13.J. N. Reddy, 1997, Mechanics of Laminated Composite Plates .Theory and Analysis, CRC Press, Boca Raton, FL.
    14.L. X. Luccioni and S. B. Dong, 1998, “Levy-type Finite Element Analysis of Vibration and Stability of Thin and Thick Laminated Composite Rectangular Plates,” Composite Part B , Vol. 29, pp. 459-475.
    15.C. C. Chao and Y. C. Chern, 2000, “Comparison of Natural Frequencies of Laminated by 3-D Theory,” Journal of Sound and Vibration, Vol. 230, No. 5, pp. 985-1007.
    16.M. Aydogdu and T. Timarci, 2003, “Vibration Analysis of Cross-Ply Laminated Square Plates with General Boundary Condition,” Composites Science and Technology, Vol. 63, pp. 1061-1070.
    17.K. M. Liew, K. C. Hung and M. K. Lim, 1993, “Method of Domain Decomposition in Vibration of Mixed Edge Anisotropic Plates,” International Journal of Solids and Structures, Vol. 30, No. 23, pp. 3281-3301.
    18.T. P. Chang and M. H. Wu, 1997, “On the Use of Characteristics Orthogonal Polynomials in the Free Vibration Analysis of Rectangular Anisotropic Plates with Mixed Boundary and Concentrated Masses,” Computers and Structure, Vol.62, No. 4, pp. 699-713.
    19.D. J. Dawe and D. Tan, 1999, “Finite Strip Buckling and Free Vibration Analysis of Stepped Rectangular Composite Laminated Plates,” International Journal for Numerical Methods in Engineering, Vol. 46, pp. 1313-1334.
    20.G. Bradfiled“Ultrasonic transducers 1. Introduction transducers. Part A.”Ultrasonic,pp.112-113,Apr 1970.
    21.Jin H.Hung ,and Heng-I Yu, “Dynamic electromechanical response of piezoelectric plates as sensors or actuators.”Materials Letters. Vol.45 ,pp.70-80,2000.
    22.K. Koga and H. Ohigashi,“Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers. ”J. Appl. Phys., Vol59,pp. 2142-2150, March 1986.
    23.C. K. Lee,“Laminated piezopolymer plates for torsion and bending sensors and actuators.”J. acoust. Soc. Am. Vol.85, pp. 2432-2439,1989.
    24.E.F. Crawley, and J. De Luis “Use of piezoelectric actuators as elements of intelligent structures.”AIAA Journal. Vol.25, No.10, pp. 1373-1385,1987
    25.X. Y. Ye, Z. y. Zhou, Y. Yang, J. H. Zhang, and J. Yao,“Determination of the mechanical properties of microstructures.”Sensors and Actuators. A54, pp. 750-754,1996.
    26.J. G. Smits, and W.S. Choi,“The Constituent Equations of Piezoelectric Heterogeneous Bimorphs.”IEEE Trans. Ultranson. Frequency Contr. Vol.38, no. 3,pp.256-270,1991.
    27.S. Brooks, and P. Heyligers, “Static behavior of piezoelectric laminates with distributed and patched actuators.”Journal of Intelligent Material systems and structures. Vol. 5,pp. 635-646,1994.
    28.Y.K. Kang, H. C. Park, W. Hwang, and K. S. Han, “Optimum placement of piezoelectric sensor/actuator for vibration control of laminated beams.”AIAA Journal, Vol.30, No.3, pp.347-357,1992.
    29.A. Baz, “Boundary control of beams using active constrained layer damping .”ASME. Vol.119, pp.166-172,Apr 1997.

    下載圖示 校內:2011-08-24公開
    校外:2011-08-24公開
    QR CODE