簡易檢索 / 詳目顯示

研究生: 林修怡
Lin, Hsiu-Yi
論文名稱: 以高頻超音波逆散射訊號及統計參數定量評估骨骼肌撞傷後的恢復情況
Quantitative Assessment of Skeletal Muscle Contusion Recovery State using High-Frequency Ultrasound Backscattered Signal and Statistical Parameter
指導教授: 王士豪
Wang, Shyh-Hau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 63
中文關鍵詞: 高頻超音波骨骼肌撞傷超音波定量參數老鼠模型
外文關鍵詞: high-frequency ultrasound, skeletal muscle contusion, ultrasonic quantitative parameters, mouse model
相關次數: 點閱:129下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 撞傷由快速且強力的壓力造成。以前的研究,如果以醫學影像來鑑定組織情況,需有資深專業人員輔助。所以此研究的目的為希望可單純以定量參數對醫學影像進行肌肉組織的評估。用於創建肌肉撞傷的裝置使用600g的重物,懸置於30cm高處,自由落體撞擊於SD大鼠腓腸肌。透過30MHz超音波探頭掃描取得B-mode影像並分析定量參數。最後,以組織切片觀察骨骼肌的病理狀態。骨骼肌撞傷前,肌肉組織IB(integrated backscatter) 與Nakagami參數分別為20dB與0.4以上。撞傷後,因血腫在壞死肌纖維中間形成,使得IB與Nakagami統計參數下降到20dB與0.4以下。而撞傷20天後,再生肌纖維會閉合受傷的空隙,定量參數則恢復如健康的肌肉的參數值。雖然不論肌肉組織受傷前後的散射體皆是前瑞利分佈,但以IB值和Nakagami參數可以明顯區分肌肉組織撞傷前後與再生肌纖維生長的變化。所以本研究確立高頻超音波有能力透過分析定量參數,來觀察骨骼肌撞傷後的恢復情況。

    Contusions caused by rapid and strong compressive force. In previous studies, if using medical image to identify the tissue, need senior professional assistance. Therefore, the objective of this study is to allow assessment of muscle tissue with quantitative parameters. The device used to create muscle contusion used 600 g of mass, suspended at 30 cm high, free fall impact on SD rats gastrocnemius muscle. The B-mode image is acquired by a 30 MHz ultrasonic transducer and the quantitative parameters are analyzed. Finally, the pathological status of skeletal muscle was observed by histological section. Before skeletal muscle contusion, IB (integrated backscatter) and Nakagami parameters of muscle tissue were above 20 dB and 0.4, respectively. After contusion, hematoma in the formation of necrotic muscle fibers in the middle, making IB and Nakagami statistical parameters down to 20dB and 0.4 below. And 20 days after the contusion, the regenerated muscle fibers will close the injured gap, quantitative parameters are restored as healthy muscle parameters. Although the scatterers during recovery of muscle tissue contusion are all pre-Rayleigh distribution, but the IB value and Nakagami parameters can significantly distinguish between muscle tissue contusion before and after and the regeneration of muscle fiber changes. Consequently, this study established the ability of high-frequency ultrasound to analyze the quantitative parameters to observe the recovery of skeletal muscle contusion.

    摘要 I Abstract II 誌謝 III Table of Contents IV List of Tables VI List of Figures VII Chapter 1: Introduction 1 1.1 General 1 1.2 Quantitative Ultrasonic Parameters 3 1.3 Ultrasonic Tissue Characterization 4 1.4 Ultrasonic Background 5 1.4.1 Muscle Contusion 5 1.4.2 Recovery of Muscle Injury 6 1.5 Related Research 8 1.5.1 Injury Muscle in Diagnosis 8 1.6 Motivation and Objectives 9 Chapter 2: Theoretical Background 10 2.1 Fundamentals of Ultrasound Wave Propagation 10 2.2 Reflection and Refraction 12 2.3 Ultrasonic Attenuation 14 2.4 Ultrasonic Scattering 15 2.5 Statistical Models for Ultrasonic Backscattered Signals 18 Chapter 3: Materials and Methods 25 3.1 Experiments on Rats 25 3.1.1 In Vivo Sprague Dawley Rat 25 3.2 Muscle Contusion Device 30 3.3 Experiment Arrangement 33 3.4 Histological Analysis 36 Chapter 4: Results 43 4.1 The Statistical Model of Probability Density Distribution 43 4.1.1 In Vivo Rat Gastrocnemius Tissue 43 4.2 Histological Sections 48 4.2.1 In Vivo Rat Gastrocnemius Tissue 48 Chapter 5: Discussion 50 5.1 Statistical Parameter Analysis of in vivo Muscle Tissues 50 5.2 Histological Analysis 52 5.2.1 Common Faults of Histological Analysis 52 5.2.2 Verification of Number of Scatterers by Histological Analysis 53 Chapter 6: Conclusions and Future Works 55 6.1 Conclusions 55 6.2 Future Works 56 References 57

    [1] K. K. Shung and G. A. Thieme, Ultrasonic scattering in biological tissues: CRC Press, 1992.
    [2] K. K. Shung, "Diagnostic Ultrasound: Imaging and Blood Flow Measurements," 2006.
    [3] Y. L. Huang, S. J. Kuo, C.-C. Hsu, H. S. Tseng, Y. H. Hsiao, and D. R. Chen, "Computer-aided diagnosis for breast tumors by using vascularization of 3-D power Doppler ultrasound," Ultrasound in medicine & biology, vol. 35, pp. 1607-1614, 2009.
    [4] J. M. Rubin, R. O. Bude, P. L. Carson, R. L. Bree, and R. S. Adler, "Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US," Radiology, vol. 190, pp. 853-856, 1994.
    [5] F. Forsberg, W. Shi, and B. Goldberg, "Subharmonic imaging of contrast agents," Ultrasonics, vol. 38, pp. 93-98, 2000.
    [6] J. W. H. Korstanje, R. W. Selles, H. J. Stam, S. E. R. Hovius, and J. G. Bosch, "Development and validation of ultrasound speckle tracking to quantify tendon displacement," Journal of Biomechanics, vol. 43, pp. 1373-1379, 2010.
    [7] N. Duric, P. Littrup, A. Babkin, D. Chambers, S. Azevedo, A. Kalinin, et al., "Development of ultrasound tomography for breast imaging: Technical assessment," Medical Physics, vol. 32, pp. 1375-1386, 2005.
    [8] J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," Ultrasonic Imaging, vol. 13, pp. 111-134, 1991.
    [9] I. Despotovic, B. Goossens, E. Vansteenkiste, A. Pizurica, and W. Philips, "Using phase information in ultrasound RF-signals for tissue characterization," in Annual workshop on Circuits, Systems and Signal Processing, 2008, pp. 314-317.
    [10] R. F. Wagner, M. F. Insana, and D. G. Brown, "Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound," Journal of the Optical Society of America A, vol. 4, pp. 910-922, 1987.
    [11] R. C. Molthen, P. M. Shankar, and J. M. Reid, "Characterization of ultrasonic B-scans using non-rayleigh statistics," Ultrasound in Medicine & Biology, vol. 21, pp. 161-170, 1995.
    [12] K. L. Klesenski, "Automatic gain compensation in an ultrasound imaging system," ed: Google Patents, 1996.
    [13] C. Njeh, I. Saeed, M. Grigorian, D. Kendler, B. Fan, J. Shepherd, et al., "Assessment of bone status using speed of sound at multiple anatomical sites," Ultrasound in medicine & biology, vol. 27, pp. 1337-1345, 2001.
    [14] P. D. Bevan and M. D. Sherar, "B-scan ultrasound imaging of thermal coagulation in bovine liver: frequency shift attenuation mapping," Ultrasound in medicine & biology, vol. 27, pp. 809-817, 2001.
    [15] F. Ossant, M. Lebertre, L. Pourcelot, and F. ŕ. Patat, "Ultrasonic characterization of maturation of fetal lung microstructure: an animal study," Ultrasound in medicine & biology, vol. 27, pp. 157-169, 2001.
    [16] P. H. Tsui and S. H. Wang, "The effect of transducer characteristics on the estimation of Nakagami paramater as a function of scatterer concentration," Ultrasound in medicine & biology, vol. 30, pp. 1345-1353, 2004.
    [17] K. K. Shung, M. Smith, and B. M. Tsui, Principles of medical imaging: Academic Press, 1992.
    [18] C. C. Huang, S. H. Wang, and P. H. Tsui, "Detection of blood coagulation and clot formation using quantitative ultrasonic parameters," Ultrasound in medicine & biology, vol. 31, pp. 1567-1573, 2005.
    [19] Y. P. Huang, Y. P. Zheng, S. F. Leung, and A. Choi, "High frequency ultrasound assessment of skin fibrosis: Clinical results," Ultrasound in medicine & biology, vol. 33, pp. 1191-1198, 2007.
    [20] B. Hete and K. Shung, "A study of the relationship between mechanical and ultrasonic properties of dystrophic and normal skeletal muscle," Ultrasound in medicine & biology, vol. 21, pp. 343-352, 1995.
    [21] V. A. Dumane, "Diversity and compounding for enhanced discrimination of breast masses in ultrasonic B-scan images," Drexel University, 2002.
    [22] R. F. Wagner, M. F. Insana, and D. G. Brown, "Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound," JOSA A, vol. 4, pp. 910-922, 1987.
    [23] P. Mohana Shankar, "A general statistical model for ultrasonic backscattering from tissues," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 47, pp. 727-736, 2000.
    [24] P. Mohana Shankar, "A compound scattering pdf for the ultrasonic echo envelope and its relationship to K and Nakagami distributions," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 50, pp. 339-343, 2003.
    [25] P. Mohana Shankar, V. Dumane, J. M. Reid, V. Genis, F. Forsberg, C. W. Piccoli, et al., "Classification of ultrasonic B-mode images of breast masses using Nakagami distribution," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 48, pp. 569-580, 2001.
    [26] S. H. Wang, F. C. Tsai, and Y. L. Hung, "Characterization of bony tissues from ultrasonic backscattering using statistical models," in Ultrasonics Symposium, 2001 IEEE, 2001, pp. 1205-1208.
    [27] B. I. Raju and M. A. Srinivasan, "Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 49, pp. 871-882, 2002.
    [28] R. Molthen, P. Shankar, J. Reid, F. Forsberg, E. Halpern, C. Piccoli, et al., "Comparisons of the Rayleigh and K-distribution models using in vivo breast and liver tissue," Ultrasound in medicine & biology, vol. 24, pp. 93-100, 1998.
    [29] Y. H. Lin, C. C. Huang, and S. H. Wang, "Quantitative assessments of burn degree by high-frequency ultrasonic backscattering and statistical model," Physics in medicine and biology, vol. 56, p. 757, 2011.
    [30] J. Souza and C. Gottfried, "Muscle injury: Review of experimental models", Journal of Electromyography and Kinesiology, vol. 23, no. 6, pp. 1253-1260, 2013.
    [31] D. Delos, T. Maak and S. Rodeo, "Muscle Injuries in Athletes", Sports Health, vol. 5, no. 4, pp. 346-352, 2013.
    [32] J. Woodhouse and E. McNally, "Ultrasound of Skeletal Muscle Injury: An Update", Seminars in Ultrasound, CT and MRI, vol. 32, no. 2, pp. 91-100, 2011.
    [33] T. Järvinen, T. Järvinen, M. Kääriäinen, H. Kalimo and M. Järvinen", Muscle injuries: biology and treatment", Am J Sports Med, vol. 33, no. 5, pp. 745-764, 2005.
    [34] J. Beiner and P. Jokl, "Muscle Contusion Injuries: Current Treatment Options", Journal of the American Academy of Orthopaedic Surgeons, vol. 9, no. 4, pp. 227-237, 2001.
    [35] J. Slavotinek, "Muscle Injury: The Role of Imaging in Prognostic Assignment and Monitoring of Muscle Repair", Seminars in Musculoskeletal Radiology, vol. 14, no. 02, pp. 194-200, 2010.
    [36] D. Delos, M. Leineweber, S. Chaudhury, S. Alzoobaee, Y. Gao and S. Rodeo, "The Effect of Platelet-Rich Plasma on Muscle Contusion Healing in a Rat Model", The American Journal of Sports Medicine, vol. 42, no. 9, pp. 2067-2074, 2014.
    [37] M. Leineweber and Y. Gao, "Quantifying skeletal muscle recovery in a rat injury model using ultrasound imaging", Journal of Biomechanics, vol. 48, no. 2, pp. 379-382, 2015.
    [38] J. Lee, A. Mitchell and J. Healy, "Imaging of muscle injury in the elite athlete", The British Journal of Radiology, vol. 85, no. 1016, pp. 1173-1185, 2012.
    [39] B. Shu, Z. Yang, X. Li, L. Q. Zhang, "Effect of different intensity pulsed ultrasound on the restoration of rat skeletal muscle contusion," Cell Biochem Biophys., vol. 62, pp. 329-336, 2012.
    [40] J. A. Diaz, D. A. Fischer, A. C. Rettig, T. J. Davis, K. D. Shelbourne, "Severe quadriceps muscle contusions in athletes," Am J Sports Med, vol. 31, pp. 289-293, 2003.
    [41] J. Beiner, P. Jok, J. Cholewicki, M. Panjabi, "The effect of anabolic steroids and corticosteroids on healing of muscle contusion injury", Am J Sports Med, pp. 2-9, 1999.
    [42] T. Järvinen, T. Järvinen, M. Kääriäinen, V. Äärimaa, S. Vaittinen, H. Kalimo and M. Järvinen, "Muscle injuries: optimising recovery", Best Practice & Research Clinical Rheumatology, vol. 21, no. 2, pp. 317-331, 2007.
    [43] T. Fernandes, A. Pedrinelli and A. Hernandez, "MUSCLE INJURY – PHYSIOPATHOLOGY, DIAGNOSIS, TREATMENT AND CLINICAL PRESENTATION", Revista Brasileira de Ortopedia (English Edition), vol. 46, no. 3, pp. 247-255, 2011.
    [44] B. Shu, Z. Yang, X. Li and L. Zhang, "Effect of Different Intensity Pulsed Ultrasound on the Restoration of Rat Skeletal Muscle Contusion", Cell Biochemistry and Biophysics, vol. 62, no. 2, pp. 329-336, 2011.
    [45] P. Silveira, E. Victor, D. Schefer, L. Silva, E. Streck, M. Paula and R. Pinho, "Effects of Therapeutic Pulsed Ultrasound and Dimethylsulfoxide (DMSO) Phonophoresis on Parameters of Oxidative Stress in Traumatized Muscle", Ultrasound in Medicine & Biology, vol. 36, no. 1, pp. 44-50, 2010.
    [46] Ş. Evirgen, "Review on the applications of ultrasonography in dentomaxillofacial region", World Journal of Radiology, vol. 8, no. 1, p. 50, 2016.
    [47] N. Bureau and D. Ziegler, "Economics of Musculoskeletal Ultrasound", Current Radiology Reports, vol. 4, no. 8, 2016.
    [48] D. Christensen, Ultrasonic bioinstrumentation: Wiley, 1988.
    [49] V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos, "Guided ultrasound wave propagation in intact and healing long bones," Ultrasound in medicine & biology, vol. 32, pp. 693-708, 2006.
    [50] K. K. Shung, Diagnostic ultrasound: Imaging and blood flow measurements: CRC press, 2005.
    [51] P. Mohana Shankar, "A general statistical model for ultrasonic backscattering from tissues," Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 47, pp. 727-736, 2000.
    [52] V. Dutt and J. F. Greenleaf, "Ultrasound echo envelope analysis using a homodyned K distribution signal model," Ultrasonic Imaging, vol. 16, pp. 265-287, 1994.
    [53] K. Raum and W. D. O'Brien, "Pulse-echo field distribution measurement technique for high-frequency ultrasound sources," Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 44, pp. 810-815, 1997.
    [54] J. Crisco, K. Hentel, W. Jackson, K. Goehner and P. Jok, "Maximal contraction lessens impact response in a muscle contusion model", Journal of Biomechanics, vol. 29, no. 10, pp. 1291-1296, 1996.
    [55] B. Shu, Z. Yang, X. Li and L. Zhang, "Effect of Different Intensity Pulsed Ultrasound on the Restoration of Rat Skeletal Muscle Contusion", Cell Biochemistry and Biophysics, vol. 62, no. 2, pp. 329-336, 2011.
    [56] A. H. Fischer, K. A. Jacobson, J. Rose, and R. Zeller, "Hematoxylin and eosin staining of tissue and cell sections," Cold Spring Harbor Protocols, vol. 2008, p. pdb. prot4986, 2008.
    [57] R. R. Turner, D. W. Ollila, S. Stern, and A. E. Giuliano, "Optimal histopathologic examination of the sentinel lymph node for breast carcinoma staging," The American journal of surgical pathology, vol. 23, pp. 263-267, 1999.
    [58] P. H. Tsui, S. Wang, C. C. Huang, and C. Y. Chiu, " Quantitative analysis of noise influence on the detection of scatterer concentration by Nakagami parameter ", Journal of Medical and Biological Engineering, Vol. 25, No. 2, pp. 45-51, 2005.
    [59] P. H. Tsui and C. C. Chang, “Imaging local scatterer concentrations by the Nakagami statistical model,” Ultrasound in Medicine and Biology, Vol. 33, No. 4, pp. 608-619, 2007.
    [60] M. Kawasaki, “An integrated backscatter ultrasound technique for the detection of coronary and carotid atherosclerotic lesions,” Sensors (Basel), Vol. 15, No. 1, pp. 979-994, 2015.

    無法下載圖示 校內:2022-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE