簡易檢索 / 詳目顯示

研究生: 施力源
Shih, Li-Yuan
論文名稱: 利用自旋幫浦探討Bi2Se3 / WSe2雙層膜對自旋電荷轉換效率之研究
Study of the spin to charge conversion in Bi2Se3 / WSe2 using the spin pump technique
指導教授: 黃榮俊
Huang, Jung-Chun
學位類別: 碩士
Master
系所名稱: 智慧半導體及永續製造學院 - 關鍵材料學位學程
Program on Key Materials
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 102
中文關鍵詞: 自旋幫浦自旋電荷轉換WSe2Bi2Se3Inverse Rashba-Edelstein effect
外文關鍵詞: Spin pumping, spin-to-charge conversion, WSe2, Bi₂Se₃, inverse Rashba-Edelstein effect
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,利用自旋幫浦在室溫下探討Py / Bi2Se3和Py / Bi2Se3 / WSe2的自旋電荷轉換效率,Bi2Se3是量子材料中的拓樸絕緣體(TI),具有高自旋軌道耦合(SOT),並透過其能量產生的拓樸表面態(TISS)因時間反演對稱性的保護。另一方面,WSe2為二維過渡金屬二硫屬化物 (TMDs),擁有高SOT與缺乏反演對稱性的晶體結構特性,且具有Rashba自旋劈裂(Rashba spin-splitting)形成Rashba 介面。這兩者材料都可透過Inverse Rashba-Edelstein effect (IREE)來產生自旋電荷轉換效率。我們探討不同層數的Bi2Se3在自旋電荷轉換效率上的不同,並來探討Bi2Se3與 WSe2雙層膜結合形成拓樸表面態與Rashba態所混和的表面態的物理性質,且研究其雙層膜的阻尼係數和自旋電荷轉換效率,發現表面態的改變會影響其轉換效率。這項研究提供了拓撲絕緣體和 Rashba 界面之間相互作用對自旋電子學的發展影響。

    In this study, we reported the efficiency of spin-charge conversion in bilayer Bi₂Se₃/WSe₂ thin films. The spin current is generated via microwave-driven ferromagnetic resonance-based spin pumping. To investigate the physical properties of Bi₂Se₃/WSe₂ bilayer, the structure of Bi₂Se₃/WSe₂ bilayer displayed the excellent crystalline with XRD and Raman spectra. We examined the spin-to-charge conversion in the Bi₂Se₃ thin films and Bi₂Se₃/WSe₂ bilayer. Our findings revealed the spin-to-charge conversion efficiency of Bi₂Se₃/WSe₂ bilayer was lower than that of Bi₂Se₃ thin films. Furthermore, the ARPES results indicated that the topological surface state (TSS) in bilayer Bi₂Se₃/WSe₂ is disrupted. At the interface, the proximity between Bi₂Se₃’s topological surface states and WSe₂’s electronic states can lead to hybridization, which can have altered dispersion relations and modified spin textures compared to pristine Bi₂Se₃. Therefore, the reduction in spin-to-charge conversion efficiency mainly was attributed from the destruction of topological surface states of Bi2Se3.

    摘要 i Abstract ii 致謝 ix 目錄 x 圖目錄 xiii 表目錄 xviii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 文獻一 2 1-2-2 文獻二 5 1-2-3 文獻三 9 1-3 實驗動機 13 第二章 實驗相關理論 15 2-1自旋霍爾效應(Spin Hall effect, SHE): 15 2-2反轉自旋霍爾效應(Inverse spin hall effect, ISHE) 16 2-3 Rashba-Edelstein effect 17 2-4 Inverse Rashba-Edelstein effect 19 2-5鐵磁共振與自旋幫浦機制(Ferromagnetic resonance and spin pumping mechanism) 20 第三章 實驗儀器與實驗流程 23 3-1 製程設備 23 3-1-1 分子束磊晶(Molecular beam epitaxy, MBE) 23 3-1-2 離子束濺射(Ion Beam Sputtering,IBS) 系統 26 3-2實驗流程 29 3-2-1 MBE製程步驟 29 3-2-2 IBS製程步驟: 32 3-2-2 自旋幫浦系統量測與數據分析: 33 3-3分析儀器 43 3-3-1 X射線繞射儀(X-Ray Diffractometer, XRD): 43 3-3-2 微拉曼光譜儀(Micro-Raman Spectrometer) 45 3-3-3 四點電阻量測(4-points probe method): 46 3-3-4 自旋幫浦系統(Spin pumping system): 47 3-3-5角分析光電子能譜(Angle resolved photoemission spectroscopy, APRES): 49 第四章 實驗結果與討論 51 4-1 實驗架構 51 4-2 Bi2Se3 / WSe2薄膜品質確認 52 4-2-1 XRD量測結果與分析 52 4-2-2 Raman量測結果與分析 55 4-2-3 表面量測結果與分析 56 4-3 鎳鐵合金(Ni80Fe20, Py)飽和磁化量和阻尼係數分析 58 4-4 單層Bi2Se3 和WSe2自旋幫浦量測結果與分析 60 4-4-1鐵磁共振分析與自旋流密度計算 60 4-4-2 自旋幫浦電壓訊號處理 64 4-4-3 Bi2Se3與WSe2之自旋轉換效率比較 67 4-5 雙層Bi2Se3 / WSe2自旋幫浦量測結果與分析 68 4-5-1 鐵磁共振分析與自旋流密度計算 68 4-5-2 自旋幫浦電壓訊號處理 72 4-5-3 Bi2Se3 / WSe2與Bi2Se3之自旋轉換效率比較 75 4-6 雙層Bi2Se3 / WSe2 ARPES分析 76 第五章 結論 79 參考文獻 80

    1. Bhatti, S., et al., Spintronics based random access memory: a review. Materials Today, 2017. 20(9): p. 530-548.
    2. Saitoh, E., et al., Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Applied physics letters, 2006. 88(18).
    3. Liu, L., et al., Spin-torque switching with the giant spin Hall effect of tantalum. Science, 2012. 336(6081): p. 555-558.
    4. Ast, C.R., et al., Giant spin splitting through surface alloying. Physical Review Letters, 2007. 98(18): p. 186807.
    5. Mellnik, A.R., et al., Spin-transfer torque generated by a topological insulator. Nature, 2014. 511(7510): p. 449-451.
    6. Rojas-Sánchez, J.-C., et al., Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Physical review letters, 2016. 116(9): p. 096602.
    7. Liu, L., et al., Spin-torque ferromagnetic resonance induced by the spin Hall effect. Physical review letters, 2011. 106(3): p. 036601.
    8. Vlietstra, N., et al., Simultaneous detection of the spin-Hall magnetoresistance and the spin-Seebeck effect in platinum and tantalum on yttrium iron garnet. Physical Review B, 2014. 90(17): p. 174436.
    9. Oiwa, A., et al., Effect of optical spin injection on ferromagnetically coupled Mn spins in the III-V magnetic alloy semiconductor (G a, M n) As. Physical review letters, 2002. 88(13): p. 137202.
    10. Bangar, H., et al., Large spin-to-charge conversion at the two-dimensional interface of transition-metal dichalcogenides and permalloy. ACS applied materials & interfaces, 2022. 14(36): p. 41598-41604.
    11. Singh, B.B., et al., High spin to charge conversion efficiency in electron beam-evaporated topological insulator Bi2Se3. ACS Applied Materials & Interfaces, 2020. 12(47): p. 53409-53415.
    12. Sun, R., et al., Large tunable spin-to-charge conversion induced by hybrid rashba and dirac surface states in topological insulator heterostructures. Nano Letters, 2019. 19(7): p. 4420-4426.
    13. Shiomi, Y., et al., Spin-electricity conversion induced by spin injection into topological insulators. Physical review letters, 2014. 113(19): p. 196601.
    14. Feng, Y.P., et al., Prospects of spintronics based on 2D materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017. 7(5): p. e1313.
    15. Xiao, D., et al., Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides. Physical review letters, 2012. 108(19): p. 196802.
    16. Zhu, Z.Y., Y.C. Cheng, and U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Physical Review B—Condensed Matter and Materials Physics, 2011. 84(15): p. 153402.
    17. Kuc, A. and T. Heine, The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. Chemical Society Reviews, 2015. 44(9): p. 2603-2614.
    18. Takahashi, S. and S. Maekawa, Spin current, spin accumulation and spin Hall effect. Science and Technology of Advanced Materials, 2008. 9(1): p. 014105.
    19. Hoffmann, A., Spin Hall effects in metals. IEEE transactions on magnetics, 2013. 49(10): p. 5172-5193.
    20. Guo, G.-Y., et al., Intrinsic spin Hall effect in platinum: First-principles calculations. Physical review letters, 2008. 100(9): p. 096401.
    21. Edelstein, V.M., Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Communications, 1990. 73(3): p. 233-235.
    22. Barman, A. and J. Sinha, Spin dynamics and damping in ferromagnetic thin films and nanostructures. Vol. 1. 2018: Springer.
    23. Lesne, E., et al., Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nature materials, 2016. 15(12): p. 1261-1266.
    24. Cheng, C., et al., Spin to charge conversion in MoS $ _ {2} $ monolayer with spin pumping. arXiv preprint arXiv:1510.03451, 2015.
    25. Nakayama, H., et al., Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni 81 Fe 19/Pt films. Physical Review B—Condensed Matter and Materials Physics, 2012. 85(14): p. 144408.
    26. Podkaminer, J., et al., Real-time and in situ monitoring of sputter deposition with RHEED for atomic layer controlled growth. APL Materials, 2016. 4(8).
    27. Jamali, M., et al., Giant spin pumping and inverse spin Hall effect in the presence of surface and bulk spin− orbit coupling of topological insulator Bi2Se3. Nano letters, 2015. 15(10): p. 7126-7132.
    28. Morrison, J., Modern physics: for scientists and engineers. 2015: Academic Press.
    29. Pinon, S., et al., Development of a microsystem based on a microfluidic network to tune and reconfigure RF circuits. Journal of Micromechanics and Microengineering, 2012. 22(7): p. 074005
    30. 莊霈于, 以角解析光電子能譜術探討新穎拓樸材料晶體與電子結構之物理特性. 2018.
    31. Gautam, S. and S.S. Kushvaha, Bi2Se3 Topological Insulator Thin Films for Various Device Applications, in Nanomaterials for Innovative Energy Systems and Devices. 2022, Springer. p. 143-172.
    32. Irfan, B., et al., Temperature dependent Raman scattering studies of three dimensional topological insulators Bi2Se3. Journal of Applied Physics, 2014. 115(17).
    33. Wang, H., et al., Surface-state-dominated spin-charge current conversion in topological-insulator–ferromagnetic-insulator heterostructures. Physical review letters, 2016. 117(7): p. 076601.
    34. Tang, W., et al., Spin‐Orbit Torque in Van der Waals‐Layered Materials and Heterostructures. Advanced Science, 2021. 8(18): p. 2100847.

    無法下載圖示 校內:2029-12-20公開
    校外:2029-12-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE