| 研究生: |
戴均儒 Tai, Chun-Ju |
|---|---|
| 論文名稱: |
應用參數紋理於滑鼠表面設計之視覺意象研究 A Study of Visual Perception on Mouse Surface Design by Using Parametric Pattern |
| 指導教授: |
謝孟達
Shieh, Meng-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 參數紋理 、視覺意象 、滑鼠表面紋理設計 、參數化設計 |
| 外文關鍵詞: | Parametric Pattern, Parametric Design, Visual Perception, Mouse Surface Design |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今參數化設計越來越盛行,在許多產品設計中可發現參數化設計的應用,這些產品時常伴隨著造型複雜的參數紋理。紋理在產品設計中所扮演的角色十分重要,紋理的表現形式會直接影響產品的質感。故本研究旨在探討參數紋理應用於滑鼠表面設計對消費者視覺意象感受之影響,並進一步探討提升同款參數紋理疏密比例造成的視覺意象變化。
本研究彙整目前常見的參數紋理與分類方式,最終依Jabi所提出的分類方式並透過Grasshopper製作出53款參數紋理。接著利用焦點團體法分類與討論,選出14組代表紋理並製作出可調紋理疏密之實驗介面。邀請11位專家實測選出各自認為合適的3種紋理疏密之參數,再將參數套用回滑鼠電腦立體模型中。經焦點團體法選出每款參數紋理之滑鼠代表圖2張,最後進行意象評分並透過相依樣本t檢定來找出紋理疏密的變化對視覺意象感受的影響,本研究結果顯示:
1. 專家認為以平面型態表現的參數紋理疏密程度,於疏值、適中值與密值對於具有美感的認知差異不大。當紋理套用於滑鼠模型上則大多會選用疏值或適中值。
2. 參數紋理在視覺意象感受上大多具有現代、裝飾、前衛、變化、科技的感受。隨紋理密度的增加裝飾感會明有顯著的上升,其中較為特別的視覺意象感受為變化與穩定。此感受隨紋理密度的增加並不會使意象偏向於其中一側,其中若紋理構成的單一元素具有鏡像對稱的特性,或紋理具有匯集點,紋理密度增加時會加強變化的感受。若紋理基底為簡單的幾何排列,或紋理線條有交錯,則會加強其穩定的感受。其餘感受則通常會隨密度的增加造成傳統、保守、復古的感受提升。本研究的結果可提供設計師在未來設計參數紋理於產品外觀設計時,擬定紋理疏密之參考依據。
Currently, parametric design is increasingly prevalent. The application of parametric design can be found in many product designs. These products are often accompanied with parametric patterns of complicated modeling. Patterns play a very important role in product design. The expressive forms of patterns directly affect the texture of products. Therefore, this study aimed to examine the effects of the application of parametric patterns in mouse surface design on consumers' perception of visual images, and further investigate the visual image changes caused by the increasing ratio of sparseness to denseness in the same parametric pattern.
This study compiled common parametric patterns and classification methods, and finally worked out 53 parametric patterns through Grasshopper3D according to the classification method proposed by Jabi. Then, by means of the classification and discussion of the focus group, 14 groups of representative patterns were selected, and the experimental interface of adjustable pattern sparseness and denseness was worked out. Eleven experts were invited to select three parameters of pattern sparseness and denseness; they considered appropriate patterns based on actual measurement, and then the parameters were applied back to the computer stereoscopic model of the mouse. The focus group decided on two representative pictures of the mouse for each parametric pattern. Finally, image scoring was conducted, and paired samples t-test was used to decide the effects of the changes in pattern sparseness and denseness on the perception of visual images. The results of this study are as follows:
1. Experts thought that when expressing the sparseness and denseness of parametric patterns by planar pattern, the sparse, medium and dense values led to little difference in aesthetic perception. When the pattern was applied to the mouse model, most people would choose the sparse or medium value.
2. In terms of the perception of visual images, parametric patterns mostly involve modern, decorative, avant-garde, changing and technological feelings. With increasing pattern density, the decorative feeling will increase significantly; the more peculiar feelings of the visual images were changing and stable. With increasing pattern density, this feeling would not make the image lean to either alternative. If a single element of the pattern composition had the characteristic of mirror symmetry, or the pattern had a convergence point, the changing feeling would strengthen when the pattern density increased. If the pattern base was a simple geometric arrangement or the pattern lines were interlaced, the stable feeling would be stronger. As for the rest of the feelings, with increasing density, traditional, conservative and retro feelings usually increased. The results of this study can provide designers with a reference to determine the pattern sparseness and denseness when designing parametric patterns in product design appearance in the future.
Agirbas, A. (2019). Façade form-finding with swarm intelligence. Automation in Construction, 99, 140-151.
Anderson, C. (2006). The long tail: Why the future of business is selling less of more. New York: Hachette Books.
Aranda, B., & Lasch, C. (2006). Pamphlet Architecture 27: Tooling. New York: Princeton Architectural Press.
Bagheri, M., & Shahroudi, A. (2018). Effect of opening architectural shapes on users’ emotion with Kansei method. Intelligent Buildings International, 10(2), 103-121. Retrieved from
https://doi.org/10.1080/17508975.2017.1394809. doi:10.1080/17508975.2017.1394809
Bianconi, F., Filippucci, M., & Buffi, A. (2019). Automated design and modeling for mass-customized housing. A web-based design space catalog for timber structures. Automation in Construction, 103, 13-25.
Burry, J., & Burry, M. (2010). The new mathematics of architecture. London, England: Thames & Hudson Londres.
Chamilothori, K., Chinazzo, G., Rodrigues, J., Dan-Glauser, E., Wienold, J., & Andersen, M. (2019). Subjective and physiological responses to facade and sunlight pattern geometry in virtual reality. Building and Environment, 150, 144-155.
Corradi, G., Belman, M., Currò, T., Chuquichambi, E. G., Rey, C., & Nadal, M. (2019). Aesthetic sensitivity to curvature in real objects and abstract designs. Acta psychologica, 197, 124-130.
Di Nicolantonio, M., Rossi, E., & Stella, P. (2019). Generative Design for Printable Mass Customization Jewelry Products. International Conference on Applied Human Factors and Ergonomics.
Dickey, R. (2019). Soft Additive Fabrication Processes: Material Indeterminacy in 3D Printing. International Conference on Computer-Aided Architectural Design Futures.
Dunn, N. (2012). Digital fabrication in architecture. London, England: Laurence King.
Fazel, A., & Izadi, A. (2018). An interactive augmented reality tool for constructing free-form modular surfaces. Automation in Construction, 85, 135-145.
Frazer, J. (2016). Parametric computation: history and future. Architectural Design, 86(2), 18-23.
Friedenberg, J. (2019a). Beauty in the eye of the beholder: Individual differences in preference for randomized visual patterns. Experimental psychology, 66(2), 112–125.
Friedenberg, J. (2019b). The Perceived Beauty of Regular Polygon Tessellations. Symmetry, 11(8), 984.
Gauvrit, N., Soler-Toscano, F., & Guida, A. (2017). A preference for some types of complexity comment on “perceived beauty of random texture patterns: A preference for complexity”. Acta psychologica, 174, 48-53.
Harries, S., Abt, C., & Brenner, M. (2019). Upfront CAD—Parametric modeling techniques for shape optimization. In Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences (pp. 191-211): Springer.
Ilbeigi, M., KohneRoudPosht, A. M., Ghomeishi, M., & Behrouzifard, E. (2019). Cognitive differences in residential facades from the aesthetic perspectives of architects and non-architects: A case study of Iran. Sustainable Cities and Society, 51, 101760. Retrieved from
http://www.sciencedirect.com/science/article/pii/S2210670719306559. doi:https://doi.org/10.1016/j.scs.2019.101760
Iwamoto, L. (2013). Digital fabrications: architectural and material techniques. New York: Princeton Architectural Press.
Jabi, W. (2013). Parametric design for architecture. London, England: Laurence King Publ.
Jipa, A., Giacomarra, F., Giesecke, R., Chousou, G., Pacher, M., Dillenburger, B., . . . Leschok, M. (2019). 3D-printed formwork for bespoke concrete stairs: from computational design to digital fabrication. ACM Symposium on Computational Fabrication.
Kawakita, J. (1991). The original KJ method. Tokyo: Kawakita Research Institute, 56, 233-237.
Kolarevic, B. (2003). Digital morphogenesis. Architecture in the digital age: Design and manufacturing, 12-28.
Kolarevic, B. (2016). Simplexity (and Complicity) in Architecture, 25-31.
Kyratsis, P., Manavis, A., Gianniotis, P., & Ghiculescu, D. (2019). A NON-CONVENTIONAL METHODOLOGY FOR INTERIOR PRODUCT DESIGN USING CONCEPTUAL DESIGN PRINCIPLES AND PARAMETRIC TOOLS. Nonconventional Technologies Review/Revista de Tehnologii Neconventionale, 23(4).
Laohakangvalvit, T., Iida, I., Charoenpit, S., & Ohkura, M. (2019). Measurements and Evaluations of Kawaii Products by Eye Tracking. In M. Ohkura (Ed.), Kawaii Engineering: Measurements, Evaluations, and Applications of Attractiveness (pp. 125-140). Singapore: Springer Singapore.
Liu, K., Zhu, C., Tao, X., Bruniaux, P., & Zeng, X. (2019). Parametric design of garment pattern based on body dimensions. International Journal of industrial ergonomics, 72, 212-221.
Loos, A. (1998). Ornament and crime: Selected essays. California: Ariadne Press.
Meirelles, C. R. M., Beraldo, P. N., & Nazareth, S. B. M. (2019). Geometric Shape, Structure and Material in Antoni Gaudí’s Work: The Colònia Güell Crypt and the Templo Expiatorio de la Sagrada Familia. Journal of Civil Engineering and Architecture, 13, 608-621.
Merton, R. K., & Merton, R. C. (1968). Social theory and social structure. New York: Simon and Schuster.
Misaka, M., & Aoyama, H. (2018). Development of design system for crack patterns on cup surface based on KANSEI. Journal of Computational Design and Engineering, 5(4), 435-441.
Moussavi, F., & Kubo, M. (2006). The function of ornament. New York: Actar Barcelona.
Mun, D., Han, S., Kim, J., & Oh, Y. (2003). A set of standard modeling commands for the history-based parametric approach. Computer-Aided Design, 35(13), 1171-1179. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0010448503000228. doi:https://doi.org/10.1016/S0010-4485(03)00022-8
Nagamachi, M. (1995). Kansei engineering: a new ergonomic consumer-oriented technology for product development. International Journal of industrial ergonomics, 15(1), 3-11.
Nault, E., Rey, E., & Andersen, M. (2016). A multi-criteria decision-support workflow for early-stage neighborhood design based on predicted solar performance. In Proceedings of PLEA 2016, 32nd international Conference on Passive and Low Energy Architecture (No. CONF).
Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. Champaign: University of Illinois press.
Oxman, R. (2017). Thinking difference: Theories and models of parametric design thinking. Design Studies, 52, 4-39. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0142694X17300431. doi:https://doi.org/10.1016/j.destud.2017.06.001
Šafárová, K., Pírko, M., Juřík, V., Pavlica, T., & Németh, O. (2019). Differences between young architects' and non-architects' aesthetic evaluation of buildings. Frontiers of Architectural Research, 8(2), 229-237. Retrieved from
ttp://www.sciencedirect.com/science/article/pii/S2095263519300251. doi:https://doi.org/10.1016/j.foar.2019.04.001
Savov, I., Todorov, G., Sofronov, Y., & Kamberov, K. (2019). Research and Development of Methods and Tools for Rapid Digital Simulation and Design of Personalized Orthoses. IUTAM Symposium on Intelligent Multibody Systems–Dynamics, Control, Simulation.
Schumacher, P. (2009). Parametricism: A new global style for architecture and urban design. Architectural Design, 79(4), 14-23.
Shiffman, D., Fry, S., & Marsh, Z. (2012). The nature of code: D. Shiffman.
Viengkham, C., Isherwood, Z., & Spehar, B. (2019). Fractal-Scaling Properties as Aesthetic Primitives in Vision and Touch. Axiomathes, 1-20.
Wu, F.-G., Tseng, C.-Y., & Cheng, C.-M. (2019). The composition of visual texture design on surface for color vision deficiency (CVD). Computers in Human Behavior, 91, 84-96. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0747563218300864. doi:https://doi.org/10.1016/j.chb.2018.02.028
Yanagawa, K. (2015). Confluence of Parametric Design and Digital Fabrication Restructuring Manufacturing Industries, 13-22.
Yu, R., Gu, N., & Ostwald, M. (2018). Evaluating creativity in parametric design environments and geometric modelling environments. Architectural Science Review, 61(6), 443-453.
Zargar, S. H., & Alaghmandan, M. (2019). CORAL: introducing a fully computational plug-in for stadium design and optimization; a case study of finding optimal spectators’ viewing angle. Architectural Science Review, 62(2), 160-170.
Zhao, H., McLoughlin, L., Adzhiev, V., & Pasko, A. (2019). 3D Mass Customization Toolkits Design, Part I: Survey and an Evaluation Model. Computer-Aided Design and Application, 16(2).
胡介璿&李宸安 (2019).幾何運算設計GH PYTHON. 台南市:曲面實業
校內:2025-06-03公開