| 研究生: |
林智偉 Lin, Chih-Wei |
|---|---|
| 論文名稱: |
無塑性細料對砂質土壤液化阻抗之研究 The Influence of Non-Plastic Fines on Liquefaction Resistance of Sandy Soils |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 顆粒結構 、液化強度 、前期反覆荷重 、無塑性細粒料含量 、動力三軸試驗 |
| 外文關鍵詞: | Dynamic triaxial tests, Liquefaction strength, Previous cyclic loading, Non-Plastic |
| 相關次數: | 點閱:177 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣西部沿海一帶的土層多為沉泥質砂性土層,含有較高比例的無塑性細粒料,在進行液化潛能評估時,容易忽略無塑性細粒料對土壤液化阻抗之影響。故本研究以C.K.C.動力三軸試驗儀,採用高雄鼓山、鹽埕區近O1捷運車站之土壤,藉由控制試體不同的相對密度,改變試體中之無塑性細粒料含量,先對重模試體施加前期反覆荷重,再進行動力三軸試驗,探討砂土受前期反覆荷重後,相對密度與細粒料含量對於土壤抗液化強度之影響。
研究結果顯示,在相同之細粒料含量下,當試體相對密度愈大,土壤之抗液化強度亦愈高:不論試體相對密度Dr=45%或Dr=75%,土壤的液化阻抗會隨著粉土含量的增加而降低,當粉土含量超過25%時,其液化阻抗下降之趨勢會趨向於平緩。在以試體之單軸向應變達5%時,即視該試體發生液化破壞之定義下,純淨砂土試體液化阻抗約為60%細粒料含量試體液化阻抗之1.6倍。
前期反覆荷重影響方面,在不改變試體相對密度的情況下,當試體受前期反覆荷重後,體積應變及超額孔隙水壓激發百分比會隨粉土含量的增加而變大,故液化阻抗會增加。但隨著相對密度的增加,其體積應變量及孔隙水壓激發百分比也將隨之減少,但減少之趨勢則漸緩。
為模擬飽和土層受振動後,顆粒的排列與接觸性,本研究以顆粒微觀假想結構解釋;當細粒料含量較少時,土壤本身是以砂土為主體,其抗液化強度是由粗顆粒所控制,細粒料扮演著填充空隙之角色;當細粒料含量較多時,砂結構空隙比變大,土壤本身以細粒料為主體,粗粒料則扮演著次要或填充的角色,其抗液化強度乃由細粒料所控制。
關鍵詞:動力三軸試驗、無塑性細粒料含量、前期反覆荷重、液化強度、顆粒結構
The majority of the sand deposits along the western coast of Taiwan is with significant amounts of non-plastic fines. The assessment of soil liquefaction potential often neglected the effect of non-plastic fines. In this study, the non-plastic sand with fines content near O1 Station of Kaohsiung Metropolitan Mass Transit. The specimens are prepared by moist tamping at several relative density under different fine contents. Dynamic triaxial tests were conducted by CKC cyclic triaxial test system. Specimens were tested until soil is liquefied. The purpose of this reaserch is to investigate the effect of fines content on the liquefaction resistance of soils. The influence of previous cyclic loading and different relative density were also studied for the understanding of the relationship of fines content and liquefaction resistance.
The test results show that liquefaction resistance of specimens increases with increasing relative density of samples ; irrespective of the relative density, the liquefaction resistance of soils decrease as the fine content increases. The liquefaction resistance of the samples with pure sand is approximately 1.6 times of the soil with a silt content of 60%.
On the influence of previous cyclic loading, the volumetric strain and excess pore water ratio would increase when specimens are imposed with small previous cyclic loading.
The arrangement of soil particles as a saturated sand deposit subjected to a small ground vibration is also simulated in this study. It is indicated that as silt content is low, the soil can be described as consisting of silt content in a sand matrix and liquefaction strength is controlled by the coarse grain ; as silt content is high, the soil can be described as consisting of sand particles in a fines matrix and liquefaction strength is controlled by the fine grain.
Key words : Dynamic triaxial tests ; Non- Plastic ; Previous cyclic loading ; Liquefaction strength
參考文獻
1. Alarocn-Guzman, A.,Leonards, G. A. AND Chameau, J. L., (1988) “Undrined Monotonic and Cyclic Strength of Sands,” Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 10, Oct , pp. 1089-1108.
2. Carmine P. Polito, James R. Martin , (2001) “Effects of nonplastic fine on liquefaction resistance of sands,” Journal of Geotechnical and Geoevironmental Engineering, ASCE, pp. 408-414.
3. Chaney, R. C., (1978) “Saturation effects on the cyclic strength of sands,” Earthquake Engineering and Soil Dynamics, ASCE, Vol. 1, pp. 342-358.
4. Chang, N. Y., Yeh, S. T., AND Kaufman, L. P., (1982) ”Liquefaction potential of clean and silty sands,” Proceedings of the Third International Earthquake Microzonation Conference, Vol. 2, pp. 1017-1032.
5. Chien, Lien-Kwei, Oh, Yan-Nam AND Chang, Chih-Hsin, (2002) “Effect of fine content on liquefaction sterength and dynamic settlement of reclaimed soil,” Canada Geotech. J., Vol. 39, pp. 1-12.
6. Chung, Kin Y. C., AND Wong, I. H., (1982) “Liquefaction potential of soils with plastic fines,” Soil Dynamics and Engineering Conference, Southampton, pp. 887-897.
7. EI Hosri, M. S., Biarez, H., Hicher, P. Y., (1984) “Liquefaction chacteristics of silty clay,” proc., 8th World Conf. on Earthquake Engrg., Prentice-Hall, Englewood Cliffs, N. J. Vol. 3, pp. 277-284.
8. Erten, D., AND Mather, M. H., (1995) “Cyclic undrained behavior of silty sand,” Soil Dynamics and Earthquake Engineering, Vol. 14, pp. 115-123.
9. Finn, W. D. L., Pickering, D. J., AND Bransby, P. L., (1971) “Sand Liquefaction in Triaxial and Simple Shear Test,“ Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97,No. SM4, pp. 639-659.
10. Ishibashi, I. M., Sherlif, M. A., AND Cheng, W. L., (1982) “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,“ Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp. 37-48.
11. Ishihara, K., Troncoso, J., Kawase, Y., AND Takahashi, Y., (1980) “Cyclic strength characteristics of tailing materials,” Soil and Foundations, pp. 127-142.
12. Ishihava, K . AND Tadatsu, H., (1979) “Effects of Over-consolidation ko Conditions on the Liquefaction Characteristics of Sands,” Soils and Foundations, Vol. 19, No. 4, pp. 59-68.
13. Jerry A. Yamamuro, AND Poul V. Lade, (1999) “Experiments and Modeling of Silty Sands Susceptible to Static Liquefaction,” Mechanics of Cohesive-Frictional Meterials, Vol. 4, pp. 545-564.
14. Kuerbis, R., Nequssey, D., AND Vaid, Y. P., (1988) “Effect of Gradation and Fines Content on the Undrained Response of Sand,“ Geotechnical Special Publication, No. 21, ASCE, pp. 330-345.
15. Lee, K. L. AND Fitton, J. A., (1969) “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquakes on Soils and Foundations, ASTM, STP 450, pp. 71-95.
16. Lee. K.L., AND Albaisa, A., (1969) “Earthquake Induced Settlements in Saturated Soil,“ Vibration Effects of Earthquake on Soil and Foundations , ASTM, STP 450, pp.71-96.
17. Marcuson, W. F., (1978) III , “Definition of Term Related to Liquefaction,” Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 565-588.
18. Mulilis, J. P., (1975) “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC 75-18, U. C. Berkeley Earthquake Engineering Research Center.
19. Nagase, H., AND Ishihara, K. (1988) “Liquefaction-Induced Compaction and Settlement of Sand during Earthquakes,” Soils and Foundations, Vol. 28, No. 1, pp. 65-76.
20. Peacock, W. H., AND Seed, H. B., (1968) “Sand Liquefaction Under Cyclic Loading Simple Shear Conditions, “Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, SM3, pp. 689-708.
21. Sandoval, J. (1989) Liquefaction and Settlement characteristics of silt soils, Ph.D thesis, University of Missouri-Rolla, Mo.
22. Seed, H. B., AND Idriss, I. M., (1971) “Simplified Procedure for Evaluating Soil Liquefaction Potential,“ Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273.
23. Seed, H. Bolton, (1976) “Evaluation of Soil Liquefaction Effects on Level Ground during Earthquakes,” Liquefaction Problems in Geotechnical Engineering, pp. 1-104.
24. Shen, C. K. Vrymoed, J. L. AND Uyeno, C. K., (1977)“The effect of fines on liquefaction of sands”, Proceeding of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Vol. 2, pp.381-385.
25. Suzuki AND Toki, (1990) “Effect of Preshearing on Liquefaction Characteristics of Saturated Sand Subjected to Cyclic Loading,” Soils and Foundation, Vol. 30, No. 2, pp. 33-42.
26. The Japan Geotechnical Society, Remedial Measures Against Soil Liquefaction, Chapter2 ”Cause of Liquefaction and Associated Effects on Structures,” pp. 11-18.
27. Thevanyagm, S., Fiorilb, M., AND Liang, J.. (2000) ”Effect of Non-Plastic Fines Undrained Cyclic Strength of Silty Sands,” Soil Dynamic and Liquefaction 2000, pp. 77-91.
28. Tianqiang Guo, Shamsher Prakash. (1999) “Liquefaction of Silts and Silt-Clay Mixtures,“ Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, pp. 706-710.
29. Vaid, Y. P. (1994) “Liquefaction of Silty soils,” Ground Failures under Seismic Conditions, Geotechnical Special Publication, No. 44, ASCE, pp. 1-16.
30. Vaid, Y. P., Chern, J. C., AND Tumi, H. (1985) “Confining Pressure, Grain Angularity and Liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 10, pp. 1229-1235.
31. Wang, W. (1979) “Some Findings in Soil Liquefaction,” Water Conservancy and Hydroelectric Power Scientific Research Institute, Beijing, China.
32. Wong, R.T., Seed, H.B., AND Chan, C.K. (1975) “Cyclic Loading Liquefaction of Gravelly Soils,“ Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 101. No. GT6, pp. 571-583.
33. Yoshimi, Y., Tanaka, K., AND Tokimatsu, K. (1988) “Liquefaction Resistance of Partially Saturated Sand,” Soils and Foundations, Vol. 29, No. 3, pp. 157-162.
34. 胡紹敏、李維峰、陳景文(2004),「O2車站潛盾隧道到達工程災變原因探討」,地工技術,第105期,第35-46頁。
35. 吳偉特(1979),「台灣地區砂性土壤液化潛能之初步研究」,土木水利,第六卷,第二期 ,第39-70頁。
36. 吳偉特、楊騰芳(1987),「細料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁。
37. 林國忠(1997),「反覆荷重作用下砂性土壤之變形行為研究」,國立成功大學土木工程系研究所,碩士論文。
38. 孫家雯(2001),「砂土細粒界定對液化強度之影響」,國立台灣大學土木工程系研究所,碩士論文。
39. 夏啟明(1992),「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文。
40. 許家豪(2003),「不同粒徑細粒料對土壤液化阻抗影響之研究」,國立成功大學土木工程系研究所,碩士論文。
41. 陳名利(1990),「以剪力模數評估砂土液化潛能之研究」,國立台灣工業技術學院工程技術研究所營建工程組,碩士論文。
42. 陳守德(1986),「微量細料對砂性土壤液化潛能之影響」,國立台灣大學土木工程系研究所,碩士論文。
43. 陳卓然(1984),「過壓密與前期微震對台灣地區砂性土壤液化潛能之影響」,國立台灣大學土木工程系研究所,碩士論文。
44. 陳界文(2001),「細粒料特性對土壤抗液化強度之影響」,國立台灣大學土木工程系研究所,碩士論文。
45. 陳嘉裕(1999),「細粒料含量對沙土浪化潛能之影響研究」,國立成功大學土木工程學研究所,碩士論文。
46. 張清秀(1982),「黏土含量對福隆砂液化潛能之影響」,國立台灣大學土木工程系研究所,碩士論文。
47. 曾顯琳(1997),「過壓密對砂土穩定狀態及液化阻抗之影響」,國立台灣工業技術學院營建工程技術研究所,碩士論文。
48. 廖延勖(1997),「過壓密對砂土動態性質及穩定狀態之影響」,國立台灣工業技術學院營建工程技術研究所,碩士論文。
49. 廖元憶(2004),「台灣西南沿海高細粒料含量砂土的探討」,國立成功大學土木工程系研究所,碩士論文。
50. 楊沂恩(1984),「細料含量及塑性指數對砂土液化影響之研究」,國立成功大學土木工程系研究所,碩士論文。
51. 鄭文隆(1981),「淺談地震作用下基礎土壤液化及液化潛能評估法」,現代營建,第二卷,第一期。
52. 鐘瑞敏(1981),「砂土中黏土含量對液化潛能之影響」,國立台灣大學土木工程系研究所,碩士論文。