簡易檢索 / 詳目顯示

研究生: 黃圓睿
Huang, Yuan-Rei
論文名稱: 具柱穿孔及分流板之板柱狀式散熱鰭片最佳形狀之預測
A Design Problem in Estimating the Optimum Shape of the Plate-Pin-Fin Heat Sink with Perforated Pins and Splitters
指導教授: 黃正弘
Huang, Cheng-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 102
中文關鍵詞: 具柱穿孔及分流板之板柱狀式散熱鰭片反算設計問題最佳化設計
外文關鍵詞: Plate-Pin-Fin Heat Sink with Perforations and Splitters, Levenberg-Marquardt method(LMM), Optimization Design
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以柱狀板式鰭片(Plate-Pin-Fin Heat Sink, PPFHS)為研究基礎,利用商業套裝軟體CFD-ACE+建立散熱鰭片模型,並透過拉凡格式法(Levenberg-Marquardt Method)最佳化散熱鰭片之外型參數,期望在控制鰭片體積的狀況下,獲得最大的熱性能係數(Thermal performance factor)。
    本研究以柱狀板式鰭片(PPFHS)為設計基礎加以延伸,並設計具柱穿孔及分流板之板柱狀式散熱鰭片(Plate-Pin-Fin Heat Sink with Perforation and Splitter, PPFHS-PS),使用反算設計問題預測最佳鰭片外型參數,探討三種不同外形設計。設計一 (PPFHS-PS-Design No.1)其各圓柱的直徑、穿孔直徑、圓柱高度、分流板厚度以及分流板高度都相同,每一單根圓柱與每一片分流板的體積總和皆相同,預測穿孔直徑及分流板長度,且圓柱的直徑可由公式推算得知;設計二 (PPFHS-PS-Design No.2)其鰭片穿孔直徑隨鰭片列數而改變,在控制體積下,預測各列的穿孔直徑及分流板長度,且各列圓柱的直徑由公式推算得知;設計三 (PPFHS-PS-Design No.3)其鰭片穿孔直徑隨穿孔位置改變,在控制體積下,預測各穿孔位置的直徑與分流板長度,而圓柱的直徑由公式推算得知。以上設計案例在計算出最佳散熱效果的鰭片穿孔直徑、柱體形狀以及分流板長度,皆可以獲得最大的熱性能係數(Thermal performance factor)。
    結果顯示,散熱模組的熱性能係數在最佳化之後確實能夠提高,其中PPFHS-PS-Design No.2具有最佳的熱性能係數η。在入流速度5.0 m/s的情況下,分流板式柱板狀散熱鰭片(Plate-Pin-Fin Heat Sink with Splitters , PPFHS-S)、穿孔式柱板狀散熱鰭片(Plate-Pin-Fin Heat Sink with Perforations, PPFHS-P)及PPFHS-PS-Design No.2相較於柱狀板式散熱鰭片(PPFHS),其熱性能係數η分別提升約4.9 %, 5.2 % and 10.1 %,顯示在經由穿孔及分流板設計後,其熱性能係數有效益加乘的效果。
    最後依據設計加工製造三組散熱模組並實際進行實驗,利用紅外線熱像儀及壓差計進行溫度及壓力的量測,並且與CFD-ACE+ 模擬計算的鰭片表面溫度進行驗證,結果顯示模擬與實際的結果非常相近。

    The optimal shape of a Plate-Pin-Fin Heat Sink with Perforations and Splitters (PPFHS-PS) is designed in this study using the software package CFD-ACE+ and the Levenberg-Marquardt method (LMM) to determine the maximum thermal performance factor η under a fixed fin volume constraint. In the present work, the implementations of perforations and splitters on a pin fin are examined, and the diameter of the pin, the perforated diameter of the pin and the length of the splitter are considered as the design variables. The hydrothermal performances of a Plate-Pin-Fin Heat Sink (PPFHS), a Plate-Pin-Fin Heat Sink with Perforations (PPFHS-P) and a Plate-Pin-Fin Heat Sink with Splitters (PPFHS-S) are compared. It is found that a great enhancement in the thermal performance factor can be resulted for the PPFHS-PS. The numerical design cases indicated that when considering an inlet velocity equal to 5.0 m/s, the percentage improvements of η for the PPFHS-P, PPFHS-S and design #2 PPFHS-PS are 4.9 %, 5.2 % and 10.1 % higher than that of the original PPFHS. This indicates that the individual contribution of thermal performance factor improvement of the PPFHS-P and PPFHS-S can be added if the perforations and splitters are utilized simultaneously in the PPFHS-PS design. Finally, experimental verifications are conducted on the manufactured PPFHS-P, PPFHS-S and design #2 PPFHS-PS modules, and the measurement results of the temperature distributions and pressure drops indicate that the experimental data matched quite well with the computational data for those heat sinks.

    摘要 I 英文摘要延伸 III 致謝 VII 目錄 IX 表目錄 XI 圖目錄 XII 符號說明 XVIII 第一章 緒論 1 1-1 研究背景與目的 1 1-2 研究方法 2 1-3 文獻回顧 4 第二章 數值模擬 10 2-1 直接解問題 10 2-2 反算設計問題 13 2-3 拉凡格式法之極小化過程 16 2-4 數值計算流程 20 第三章 結果與討論 26 第四章 實驗驗證 52 4-1 實驗目的 52 4-2 實驗原理 52 4-3 實驗設備 53 4-3-1 不同設計參數之散熱鰭片模型 53 4-3-2 風洞 53 4-3-3 紅外線熱像儀 54 4-3-4 加熱設備 55 4-3-5 導熱膏 55 4-3-6 風速計 55 4-3-7 溫度量測設備 56 4-3-8 壓力量測設備 56 4-3-9 陶瓷纖維絕熱棉材料 57 4-4 實驗步驟 57 4-5 實驗結果與討論 58 第五章 結論 98 參考文獻 100

    1. Sparrow EM, Ramsey J.W, Altermani CAC. Experiments on in-line pin-fins arrays and performance comparison with staggered arrays. ASME J Heat Transfer 1980;102:44–50
    2. Bilen K, Akyol U, Yapici S. Heat transfer and friction correlations and thermal performance analysis for a finned surface. Energy Convers Manag 2001;42 :1071–83
    3. Yu X, Feng J, Feng Q, Wang Q. Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink. Appl. Therm. Eng. 2005;25:173-82.
    4. Tiwari S, Chakraborty D, Biswas G, Panigrahi P.K. Numerical prediction of flow and heat transfer in a channel in the presence of a built-in circular tube with and without an integral wake splitter. Int. J. Heat Mass Transfer 2005;48:439-53.
    5. Chakrabarty SG, Yadav AH, Wagh KN. Experimental analysis of heat transfer and pressure drop behaviour of a circular cylinder with passive flow control technique, in: Special Issue for National Conference on Recent Advances in Technology and Management for Integrated Growth, 2013.
    6. Shrivastava V, Badami P, Saravanan V, Seetharamu KN. Effect of triangular wake splitter on flow and heat transfer over a circular Cylinder for various chord lengths. Int. J. Sci. Eng. Res. 2014;5:554-67.
    7. Razavi SE, Osanloo B, Sajedi R. Application of splitter plate on the modification of hydro-thermal behavior of PPFHS. Applied Thermal Engineering 2015;80:97–108.
    8. Sajedi R, Osanloo B, Talati F, Taghilou M. Splitter plate application on the circular and square pin fin heat sinks. Microelectronics Reliability 2016;62:91–101.
    9. Hosseinirad E, Khoshvaght-Aliabadi M, Hormozi F. Effects of splitter shape on thermal-hydraulic characteristics of plate-pin-fin heat sink (PPFHS). International Journal of Heat and Mass Transfer 2019;143: 118586.
    10. Shaeri MR, Yaghoubi M. Numerical analysis of turbulent convection heat transfer from an array of perforated fins. Int J Heat Fluid Flow 2009;30:218–28.
    11. Ismail MF, Hasan MN, Ali M. Numerical simulation of turbulent heat transfer from perforated plate-fin heat sinks. Heat Mass Transfer 2014;50:509–19.
    12. Chin SB, Foo JJ, Lai YL, Yong TKK. Forced convective heat transfer enhancement with perforated pin fins. Heat Mass Transfer 2013;49:1447–58.
    13. Huang CH, Liu YC, Ay H. The design of optimum perforation diameters for pin fin array for heat transfer enhancement. International Journal of Heat and Mass Transfer 2015;84:752–65.
    14. Huang CH, Chen MH. An estimation of the Optimum Shape and Perforation Diameters for Pin Fin Arrays. International Journal of Heat and Mass Transfer 2019;131:72–84.
    15. Marquardt DM. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Indust. Appl. Math. 1963;11:431–41.
    16. Huang CH, Lin JW. Optimal gas channel shape design for a serpentine PEMFC---Theoretical and experimental studies. J. Electrochem. Soc. 2009;156:B178–B187.
    17. Huang CH, Chang WL. An inverse design method for optimizing design parameters of heat sink modules with encapsulated chip. Applied Thermal Engineering 2012;40:216–26.
    18. Huang CH, Chen YH. An Impingement Heat Sink Module Design Problem in Determining Simultaneously the Optimal Non-Uniform Fin Widths and Heights. International Journal of Heat and Mass Transfer 2014;73:627–33.
    19. CFD-ACE+ user’s manual, ESI-CFD Inc., 2005.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE