簡易檢索 / 詳目顯示

研究生: 吳淑華
Wu, Shu-Hua
論文名稱: 非平面動脈流場之計算研究
The Computations for Non-Planar Arterial Bypass
指導教授: 李定智
Lee, Denz
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 84
中文關鍵詞: 剪應力非平面部分阻塞數值模擬繞道管吻合術內膜增生血液動力學
外文關鍵詞: Hemodynamics, Intimal hyperplasia, Non-planar, Wall shear stress, Numerical simulation, Parallel computing, Stenosis, Anastomosis, Bypass
相關次數: 點閱:126下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   動脈繞道手術是目前臨床上在治療阻塞性的主動脈病變時普遍應用且有效的方法之一。然而,其長短期的成功率一直無法有效地提高,短期上由於血栓形成,長期上則肇因內膜增生,以致最後必須再重複接受手術治療。
      本研究延續已完成的繞道管穩態流場先導研究及可行性評估,採用有限體積法以數值模擬方式探討動脈血管繞道模型之整體流場,以瞭解血液動力學在誘發內膜增生—繞道手術失敗最主要的原因—時所扮演的角色。主要特點在於探討完整繞道管系統的流場,即同時包含其分歧與匯流兩個吻接處以及考慮繞道管曲率對流場所造成的影響。
      在本研究中,首先針對相同管徑、固定插接角度(45°)、主管中段部份阻塞的物理問題,進一步加上繞道管的三維特徵,藉由在繞道管的兩吻接處間引進一扭轉角度,形成一非平面繞道管結構,並完成非平面繞道管結合主管部份阻塞外型的流場探討,其重點則在於分析其流場特性的影響,接著將分析結果與平面繞道管、主管部份阻塞的外型作比較,期能藉此探討繞道管幾何特徵與主管阻塞處流場之間的相互影響關係。

      Graft-bypass surgery is at present a routine and effective revascularization procedure for occlusive arterial diseases. However, the long-term success of vascular grafts is often limited by the progression of intimal hyperplasia.
      The present project is based on the preliminary numerical study of the steady flow field in a complete bypass tube. In order to better understand the role of hemodynamics in the development of intimal hyperplasia, a finite volume method is adopted to investigate the flow field in a representative human femoral bypass system. The main characteristic of the research lies in the fact that a complete bypass system is considered, that is, to include both the proximal and distal anastomosis junctions and to consider the effect of graft curvature on the flow field.
      In the present study, the steady flow field of a bypass system with a uni-radius, fixed bypass angle(45°), partially occluded at middle site of the host artery and an asymmetric, non-planar bypass graft was investigated. By introducing a twist angle between the two anastomostic junctions of the bypass tube, a three-dimensional , non-planar geometry was obtained. The results were compared with that of the steady flow field of a planar bypass graft. The focus was on the interaction of the three-dimensional characteristic of the bypass graft and the flow field of the partially occluded at middle site of the host artery. Some suggestions to the medical practice could be drawn from the current results.

    中文摘要.......................................................Ⅰ 英文摘要.......................................................Ⅱ 誌謝...........................................................Ⅳ 目錄...........................................................Ⅴ 表目錄.........................................................Ⅷ 圖目錄.........................................................Ⅸ 符號說明.......................................................XI 第一章 緒論............................................................1 1.1 簡介......................................................1 1.2 背景......................................................3 1.3 文獻回顧..................................................6 1.4 研究目的.................................................10 第二章 統御方程式與數值方法...........................................11 2.1 統御方程式...............................................11 2.2 座標轉換.................................................13 2.3 數值方法.................................................15 2.3.1 動量方程式之離散化...................................15 2.3.2 動量內插法...........................................17 2.3.3 第一壓力修正方程式...................................19 2.3.4 第二壓力修正方程式...................................20 2.3.5 邊界條件.............................................21 2.3.6 收斂標準.............................................21 2.4 求解程序.................................................22 第三章 格點系統的產生.................................................23 3.1 格點產生.................................................23 3.2 區域式格點法.............................................24 3.2.1 介面處理.............................................24 3.2.2 非平面繞道管.........................................26 3.2.3 阻塞段...............................................27 3.3 計算程序.................................................28 第四章 結果與討論.....................................................30 4.1 基本外型.................................................30 4.1.1 軸對稱的栓塞外型.....................................31 4.1.2 非對稱栓塞的外型.....................................31 4.2 流場中的參數.............................................32 4.3 非平面繞道管、主管部分阻塞之面積縮減模型.................33 4.3.1 速度部份.............................................33 4.3.2 壁面剪應力...........................................34 4.3.3 分流率和迴流區.......................................36 4.4 非平面繞道管、主管部分阻塞之非對稱栓塞模型...............37 4.4.1 速度部份.............................................37 4.4.2 壁面剪應力、分流率和迴流區...........................38 4.5 與平面繞道管、主管部分阻塞模型作比較.....................38 4.5.1 相同點...............................................38 4.5.2 相異點...............................................39 第五章 結論...........................................................43 5.1 重點回顧與結論...........................................43 5.2 建議.....................................................48 參考文獻.......................................................50 表.............................................................61 圖.............................................................58

    [1] Su, C. M., Lee, D., Tran-Son-Tay, R., and Shyy, W., 2005, “Fluid Flow Structure in Artery Bypass Anastomosis,” J. Biomech. Eng., Vol. 127, pp. 611-618.
    [2] Lee, D., and Chen, J. Y., 2002, “Numerical Simulation of Steady Flow Fields in a Model of Abdominal Aorta with its Peripheral Branches,” J. Biomechanics, Vol. 35, pp. 1115-1122.
    [3] Lee, D., Su, J. M., and Liang, H. Y., 2001, “A Numerical Simulation of Steady Flow Fields in a Bypass Tube,” J. Biomechanics, Vol. 34, pp. 1407-1416.
    [4] Lee, D., and Chen, J. Y., 2000, “Numerical Simulation of Flow Fields in a Tube with Two Branches,” J. Biomechanics, Vol. 33, pp. 1305-1312.
    [5] Lee, D., Chiu, Y. L., and Jen, C. Y., 1997, “Platelet Adhesion onto the Wall of a Flow Chamber with an Obstacle,” Biorheology, Vol. 34, pp. 111-126.
    [6] Lee, D., and Chiu, J. J., 1996, “Intimal Thickening under Shear in a Carotid Bifurcation- A Numerical Study,” J. Biomechanics, Vol. 29, pp. 1-11.
    [7] Zarins, C., Giddens, D., Bharadvaj, G., Sottiurai, V., Mabon, R., and Glagov, S., 1983, “Carotid Bifurcation Atherosclerosis: Quantitative Correlation of Plaque Localization with Flow Velocity Profiles and Wall Shear Stress,” Circ. Res., Vol. 53, pp. 502-514.
    [8] Friedman, M. H., Hutchins, G. M., and Bargeron, C. B., 1981, “Correlation Between Intimal Thickness and Fluid Shear in Human Arteries,” Atherosclerosis, Vol. 39, p. 425-436.
    [9] Schwartz, C. J., Valente, A. J., Spraque, E. A., Kelley, J. L., and Nerem, R. M., 1991, “The Pathogenesis of Atherosclerosis: An Overview,” Clin. Cardiol., Vol. 14, pp. 1-16.
    [10] Turitto, V. T., and Braumgartner, H. R., 1979, “Platelet Interaction with Subendothelium in Flowing Rabbit Blood: Effect of Blood Shear Rate,” Microvasc. Res., Vol. 17, pp. 38-54.
    [11] Karino, T., 1986, “Microscopic Structure of Disturbed Flows in the Arterial and Venous Systems, and its Implication in the Localization of Vascular Diseases,” Int. Angiol., Vol. 5, pp. 297-313.
    [12] Whittemore, A. D., Clowes, A. W., Couch N. P., and Mannick J. A., 1981, “Secondary FemoroPopliteal Reconstruction,” Ann. Surg., Vol. 193, pp. 35-42.
    [13] Imparato, A. M., Bracco, A., Kim, G.E., and Zeff, R., 1972, “Intimal and Neointimal Fibrous Proliferation Causing Failure of Arterial Reconstruction,” Surgery, Vol. 72, pp. 1007-1017.
    [14] Echave, V., Koornick A. R., Haimov, M., and Jacobson, J. H., 1979, “Intimal Hyperplasia as a Complication of the Use of the Polytetrafluoroethylene Graft for Femoral-popliteal Bypass,” Surgery, Vol. 86, pp.791-798.
    [15] Sottiurai, V. S., Yao, J. S. T., Flinn, W. R., and Batson, R. C., 1983, “Intimal Hyperplasia and Neointima: An Ultrastructural Analysis of Thrombosed Grafts in Humans,” Surgery, Vol. 93, pp. 809-817.
    [16] Bassiouny, H. S., White, S., Glagov, S., Choi, E., Giddens, D. P., and Zarins, C. K., 1992, “Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced,” J. Vasc. Surg., Vol. 15, pp. 708-717.
    [17] Rittgers, S. E., Karayannacos, P. E., Guy J. F., Nerem R. M., Shaw G. M., Hostetler J. R., and Vasko J. S., 1978, “Velocity Distribution and Intimal Proliferation in Autologous Vein Grafts in Dogs,” Circ. Res., Vol. 42, pp.792-801.
    [18] Kohler, T. R., Kirkman, T. R., Kraiss, L. W., Zierler, B. K., and Clowes, A. W., 1991, “Increased Blood Flow Inhibits Neointimal Hyperplasia in Endo-Thelialized Vascular Grafts,” Circ. Res., Vol. 69, pp. 1557-1565.
    [19] Geary, R. L., Kohler, T. R., Vergel, S., Kirkman, T. R., and Clowes, A. W., 1994, “Time Course of Flow-Induced Smooth Muscle Cell Proliferation and Intimal Thickening in Endothelialized Baboon Vascular Grafts,” Circ. Res., Vol. 74, pp. 14-23.
    [20] Hofer, M., Rappitsch, G., Perktold, K., Trubel, W., and Schima, H., 1996, “Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomoses and Correlation to Intimal Hyperplasia,” J. Biomech., Vol. 29, pp. 1297-1308.
    [21] White, S. S., Zarins, C. K., Giddens, D. P., Bassiouny, H., Loth F., Jones, S. A., and Glagov, S., 1993, “Hemodynamic Patterns in Two Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number, and Hood Length,” J. Biomech. Eng., Vol. 115, pp. 104-111.
    [22] Ojha, M., 1994, “Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia,” Circ. Res., 74(6), pp. 1227-1231.
    [23] Kleinstreuer, C., Lei, M., and Archie, J. P., 1996, “Flow Input Waveform Effects on the Temporal and Spatial Wall Shear Stress Gradients in a Femoral Graft-Artery Connector,” J. Biomech. Eng., Vol. 118, pp. 506-510.
    [24] Lei, M., Kleinstreuer, C., and Archie, J. P., 1995, “Geometric Design Improvements for Femoral Graft-Artery Junctions Mitigating Restenosis,” J. Biomech., Vol. 29, pp. 1605-1614.
    [25] Ojha, M., Cobbold, R. S., and Johnston, K. W., 1993, “Hemodynamics of a Sid-to-End Proximal Arterial Anastomosis Model,” J. Vasc. Surg., Vol. 17, pp. 646-655.
    [26] Galego, S. J., Goldenberg, S., Ortiz, J. P., Gomes, P. D., and Ramacciotti, E., 2000, “Comparative Blood Flow Study of Arteriovenous Fistulae in Canine Femoral Arteries: Modified Latero-Lateral and End-Lateral Techniques,” Artif. Organs, Vol. 24, pp. 235-240.
    [27] Hughes, P. E., Shortland, A. P., and How, T. V., 1996 , “Visualization of Vortex Shedding at the Proximal Side-to-End Artery-Graft Anastomosis,” Biorheology, Vol. 33, pp. 305-317.
    [28] Keynton, R. S., Rittgers, S. E., and Shu, M. C., 1991, “The Effect of Angle and Flow Rate upon Hemodynamics in Distal Vascular Graft Anastomoses: An in Vitro Model Study,” J. Biomech. Eng., Vol. 113, pp. 458-463.
    [29] Ojha, M., Cobbold, R. S., and Johnston, K. W., 1994, “Influence of Angle on Wall Shear Stress Distribution for an End-to-Side Anastomosis,” J. Vasc. Surg., Vol. 19, pp. 1067-1073.
    [30] Fei, D. Y., Thomas, J. D., and Rittgers, S. E., 1994, “The Effect of Angle and Flow Rate upon Hemodynamics in Distal Vascular Graft Anastomoses: A Numerical Model Study,” J. Biomech. Eng., Vol. 116, pp. 331-336.
    [31] Staalsen, N. H., Ulrich, M., Winther, J., Pedersen, E. M., How, T., and Nygaard, H., 1995, “The Anastomosis Angle Does Change the Flow Fields at Vascular End-to-Side Anastomoses in Vivo,” J. Vasc. Surg., Vol. 21, pp. 460-471.
    [32] Loth, F., Jones, S. A., Giddens, D. P., Bassiouny, H. S., Glagov, S., and Zarins, C. K., 1997, “Measurements of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions,” J. Biomech. Eng., Vol. 119, pp. 187-194.
    [33] Keynton, R. S., Evancho, M. M., Sims, R. L., and Rittgers, S. E., 1999, “The Effect of Graft Caliber upon Wall Shear Within in Vivo Distal Vascular Anastomoses,” J. Biomech. Eng., Vol. 121, pp. 79-88.
    [34] Sherwin, S. J., Shah, O., Doorly, D. J., Peiro, J., Papaharilaou, Y., Watkins, N., Caro, C. G., and Dumoulin, C. L., 2000, “The Influence of Out-of-Plane Geometry on the Flow Within a Distal End-to-Side Anastomosis,” J. Biomech. Eng., Vol. 122, pp. 86-95.
    [35] Papaharilaou, Y., Doorly, D. J., and Sherwin, S. J., 2002, “The Influence of Out-of-Plane Geometry on Pulsatile Flow Within a Distal End-to-Side Anastomosis,” J. Biomech., Vol. 35, pp. 1225-1239.
    [36] Hughes, P. E., and How, T. V., 1996, “Effects of Geometry and Flow Division on Flow Structures in Models of the Distal End-to-Side Anastomosis,” J. Biomechanics, Vol. 29, pp. 855-872.
    [37] Li, X. M., and Rittgers, S. E., 2001, “Hemodynamic Factors at the Distal End-to-Side Anastomosis of a Bypass Graft with Different POS:DOS Flow Ratios,” J. Biomech. Eng., Vol. 123, pp. 270-276.
    [38] Ethier, C. R., Steinman, D. A., Zhang, X., Karpik S. R., and Ojha, M., 1998, “Flow Waveform Effects on End-to-Side Anastomotic Flow Patterns,” J. Biomechanics, Vol.31, pp. 609-617.
    [39] Bertolotti, C., and Deplano, V., 2000, “Three-Dimensional Simulations of Flow Through a Stenosed Coronary Bypass,” J. Biomech., Vol. 33, pp. 1011-1022.
    [40] Kute, S. M., and Vorp, D. A., 2001, “The Effect of Proximal Artery Flow on the Hemodynamics at the Distal Anastomosis of a Vascular Bypass Graft: Computational Study,” ASME J. Biomech. Eng., Vol. 123, pp. 277-283.
    [41] Fry, D. L., 1969, “Certain Histological and Chemical Responses of the Vascular Interface to Acutely Induced Mechanical Stress in the Aorta of the Dog”, Circ. Res., Vol. 24, pp. 93-108.
    [42] Friedman, M. H., Deters, O. J., Bargeron, C. B., Hutchins, G. M., Mark, F. F., 1986, “Shear-Dependent Thickening of the Human Arterial Intima”, Atherosclerosis, Vol. 60, pp. 161-171.
    [43] Suhas V. patankar, “Numerical heat transfer and fluid flow”
    [44] Lee, D., Chiu, J. J., 1992, “Computation of Physiological Bifurcation Flows Using a Patched Grid”, Computers and Fluids, Vol. 21, 519-535.
    [45] Chiu, J. J., 1992, “Computation of Three-Dimensional Branching Flows Using a Covariant Velocity Based Calculation Procedure and Zonal Grid Methods,” Ph.D. Thesis, National Cheng Kung University, Tainan, Taiwan.
    [46] Steinman, D. A., Vinh, B., Ethier, C. R., Ojha, M., Cobbold, R. S. C., and Johnston, K. W., 1993, “A Numerical Simulation of Flow in a Two-Dimensional End-to-Side Anastomosis Model,” J. Biomech. Eng., Vol. 115, pp. 112-118.
    [47] Moore, J. A., Steinman, D. A., Prakash, S., Johnston, K. W., and Ethier, C. R., 1999, “A Numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses,” J. Biomech. Eng., Vol. 121, pp. 265-272.
    [48] Sherwin, S. J., Shah, O., Doorly, D. J., Peiro, J., Papaharilaou, Y., Watkins, N., Caro, C. G., and Dumoulin, C. L., 2000, “The Influence of Out-of-Plane Geometry on the Flow Within a Distal End-to-Side Anastomosis,” J. Biomech. Eng., Vol. 122, pp. 86-95.
    [49] Ku, J. P., Draney, M. T., Arko, F. R., Lee, W. A., Chan, F. P., Pelc, N. J., Zarins, C. K., and Taylor, C. A., 2002, “In Vivo Validation of Numerical Prediction of Blood Flow in Arterial Bypass Grafts,” Annals of Biomedical Engineering, Vol. 30, pp. 743-752.
    [50] Longest, P. W., and Kleinstreuer, C., 2003, “Numerical Simulation of Wall Shear Stress Conditions and Platelet Localization in Realistic End-to-Side Arterial Anastomoses,” J. Biomech. Eng., Vol. 125, pp. 671-681.
    [51] Ray, L. I., O’Connor, J. B., Davis, C. C., Hall, D. G., Mansfield, P. B., Rittenhouse, E. A., Smith, J. C., Wood, S. J., and Sauvage, L. R., 1979, ‘‘Axillofemoral Bypass: A Critical Reappraisal of Its Role in the Management of Aortoiliac Occlusive Disease,’’ Am. J. Surg., Vol. 138, pp. 117–128.
    [52] Ku, D. N., 1997, “Blood Flow in Arteries,” Annu. Rev. Fluid Mech., Vol. 29, pp. 399−434.
    [53] Majumdar, S., 1988, “Role of Underrelaxation in Momentum Interpolation of Flow with Nonstaggered Grids”, Numerical Heat Transfer, Vol.13, pp.125-132.

    下載圖示 校內:2007-08-18公開
    校外:2007-08-18公開
    QR CODE