簡易檢索 / 詳目顯示

研究生: 林煒喬
Lin, Wei-Ciao
論文名稱: 不同圍壓狀態對低塑性粉土內部沖蝕性質之影響
The Influence of Confining Pressure on Internal Erosion of Low Plastic Silty Sands
指導教授: 陳景文
Chen, Ying-Wun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 122
中文關鍵詞: 低塑性粉土內沖蝕效應Flexible Wall Pinhole 試驗
外文關鍵詞: low plastic silt, internal erosion effects, Flexible Wall Pinhole tests
相關次數: 點閱:130下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低塑性粉土為台灣西南部地區土層常見之細粒料,因其具有顆粒細小、
    塑性低的特性,低塑性粉土層受內部水流沖蝕作用時,細粒料易造成流
    失,使土壤孔隙增大,強度發生弱化現象,進而引致許多深開挖管湧工
    程災害,故有必要針對低塑性粉土的內沖蝕效應做更深入的探討,以提
    供工程設計施工參考。
    本研究以Flexible Wall Pinhole(簡稱FWP)試驗儀,採用高雄苓雅
    區之低塑性粉土,經由控制不同試體條件(FC=0、20 及40%,Dr=60 及
    85%),探討各種有效應力狀態下(σc’=100、150 及200kPa)對土壤內沖蝕
    性質之影響。
    根據試驗結果發現,對會發生內沖蝕破壞之土樣而言,試體在相同
    低塑性細粒料含量條件下,其剪力強度及抗內沖蝕能力會隨有效圍壓增
    加而提高,而隨著試體緊密程度的提高,抗沖蝕能力也隨之提高;在相
    同有效圍壓與相對密度條件下,臨界沖蝕壓力有隨細粒料含量增加而降
    低之趨勢,且隨著細粒料含量增加,試體受內沖蝕作用後之剪力強度摩
    擦角及強度衰減比皆有下降的趨勢,可見細粒料含量對土壤抗沖蝕能力
    有不利的影響;最後,在土樣適用性之討論方面,本研究分別採用日本
    神奈川縣土壤與高雄苓雅區土樣進行比對,試驗結果顯示,土壤之抗沖
    蝕能力受土壤顆粒組構型態影響較大,而受土樣來源的影響較小。
    綜合以上結果可知,FWP 試驗法可用於探討不同地區土壤之內沖蝕
    性質,對於低塑性粉土而言,可藉由降低地下水位差與提高土層密度等
    方法,增加其抗內沖蝕作用之能力。

    Low plasticity silt soil is quite popular in the stratum in southwestern of
    Taiwan. Due to the characteristic of fine grain and low plasticity, it can easy
    lose by internal erosion effects. The low plastic silty sand has caused disasters
    in several deep excavation projects in Taiwan.
    In this study, the Flexible Wall Pinhole tests were conducted under
    different confining pressures to investigate internal erosion effects of different
    samples conditions. The samples of low plasticity silt were collected from
    Kaohsiung Lingya district.
    Based on test results, the shear strength and the internal erosion resistance
    of disturbance samples were increasing as the confining pressures and the
    degree of soil tightness increased. In the same confining pressures and relative
    density conditions, the critical erosion pressures had decreasing trend as the
    fine content of sample increased. In addition, with the increase of fine content,
    the erosion samples’ shear strength decay was evident. In the applicability of
    different soil strata, using Kanagawa soil in Japan and Lingya District soil in
    Kaohsiung conducted FWP test. According to the test data, the internal
    erosion resistance of different soil strata had greater relation with particle size
    distribution curve than the source of soil.
    In summary, FWP test can be used to explore the property of internal
    erosion from different area soil. For low plastic silt, reducing the groundwater
    level and increasing the soil density can increase its internal erosion
    resistance.

    摘要 I ABSTRACT II 誌謝 III 目錄 VII 表目錄 X 圖目錄 XI 照片目錄 XIV 符號說明 XVI 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 1-3 研究目的 2 1-4 研究流程 3 第二章 文獻回顧 5 2-1 低塑性粉土工程性質介紹 5 2-1-1 成份組成 5 2-1-2 微觀結構 6 2-1-3 基本指數性質 8 2-1-4 顆粒組構特性 8 2-1-5 力學行為 12 2-2管湧穩定分析 25 2-2-1 理論分析法 26 2-2-2 試驗分析法 28 2-3 分散性分析判定 28 2-3-1 針孔試驗法(Pinhole Test) 30 2-3-2 雙比重計法( Double Hydrometer Test ) 31 2-3-3 碎塊試驗( Crumb Test ) 32 2-3-4 孔隙水離子分析法(Analysis of Pore Water Extract) 33 2-3-5 輔助性試驗 35 2-4土壤內沖蝕試驗方法比較與選擇 35 2-5 重模製作方式 42 第三章 試驗方法及試驗設備 44 3-1 土樣來源 44 3-2試驗內容 47 3-3 Flexible Wall Pinhole Test 介紹 47 3-3-1設計理念 48 3-3-2試驗儀器介紹 49 3-3-3沖蝕之試驗條件 68 3-3-4試驗步驟 70 第四章 試驗結果分析 74 4-1 試驗土樣之基本性質 74 4-2內沖蝕試驗結果 80 4-3 試驗結果分析與討論 88 4-3-1 相對密度之影響 88 4-3-2 細粒料含量之影響 95 4-3-3 圍壓之影響 104 4-3-4 土樣適用性 112 第五章 結論與建議 116 5-1結論 116 5-2建議 118 參考文獻 119 附錄A A-1 附錄 B B-1

    1. 吳偉特、楊騰芳,「細粒料含量在不同程度影響因素中對台灣地區沉積
    性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74 頁,
    1987。
    2. 周鴻昇,「NGI 單剪應力定體積與不排水狀況下砂土行為之研究」,國
    立台灣大學土木工程系研究所,碩士論文,1994。
    3. 林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,國立成功大學土
    木工程系研究所,碩士論文,2006。
    4. 陳嘉裕,「細粒料含量對沙土浪化潛能之影響研究」,國立成功大學土
    木工程學研究所,碩士論文,1999。
    5. 倪勝火,國立成功大學土壤力學實驗手冊,2006。
    6. 夏啟明,「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,國立
    台灣大學土木工程研究所,碩士論文,1992。
    7. 財團法人臺灣營建研究院,「高雄捷運工程橘線CO2 區段標LUO09 潛
    盾隧道坍陷原因鑑定報告」,2006。
    8. 財團法人臺灣營建研究院,「高雄捷運工程橘線CO1 區段標SUO01 車
    站連續壁滲水坍塌事故再分析與對應契約影響之研究報告」,2007。
    9. 游家豪,「低塑性細料對粉質砂土動態性質之影響」,國立成功大學土
    木工程系研究所,碩士論文,2007。
    10.曾顯琳,「過壓密對砂土穩定狀態及液化阻抗之影響」,國立台灣工業
    技術學院營建工程技術研究所,碩士論文,1997。
    11.黃安斌,林志平,紀雲曜,古志生,蔡錦松,李德河,林炳森, 「台灣中西部粉
    土細砂液化行為分析」, 地工技術, 第103 期, 第5-30 頁,2005。
    12.葉向陽,分散性黏土及其處理方式,現代營建雜誌,地下工程實務(二),
    122
    台灣,台北,1985。
    13.楊騰芳,「細粒料在過壓密及前期微震作用下對飽和殺性土壤液化潛能
    之影響」,國立台灣大學土木工程研究所,碩士論文,1986。
    14.萬鼎工程公司,「高雄捷運紅橘線路網補充地質調查工程地質調查報告
    書」,2001。
    15.潘家錚主編,土石壩,水利電力出版社,中國,北京,1992。
    16.廖元憶,「台灣西南沿海高細粒料含量砂土的探討」,國立成功大學土
    木工程系研究所,碩士論文,2005。
    17.蕭吉良,低塑性粉土內部沖蝕性質之研究」,國立成功大學土木工程系
    研究所,碩士論文,2010。
    18.ASTM Standard D4221-99 Standard Test Method for Dispersive
    Characteristics of Clay Soil by Double Hydrometer. ASTM
    International,West Conshohocken, PA. www.astm.org, 2005.
    19. ASTM Standard D4647-06 Standard Test Method for Identification and
    Classification of Dispersive Clay Soils by the Pinhole Test. ASTM
    International,West Conshohocken, PA. www.astm.org, 2006.
    20. ASTM Standard D6572-06 Standard Test Methods for Determining
    Dispersive Characteristics of Clayey Soils by the Crumb Test. ASTM
    International,West Conshohocken, PA. www.astm.org, 2006.
    21. Chang, N. Y., Yeh, S. T. and Kaufman, L. P., "Liquefaction Potential of
    Clean and Silty Sands," Proceedings of the Third International Earthquake
    Microzonation Conference, Vol. 2, pp.1017-1032, 1982.
    22. Decker, R.S. and Dunnigan, L.P.,"Dispersive and Use of the SCS
    Dispersion Test,"Paper Submitted for ASTM Symposium on Dispersive
    Clay, June, 1976.
    23. Erten, D., and Mather, M. H., "Cyclic Undrained Behavior of Silty Sand,"
    Soil Dynamics and Earthquake Engineering, Vol. 14, pp.115-123, 1995.
    24. Ishihara, K. and Lee, W. F. "Forensic Diagnosis for Site-Specific Ground
    conditions in Deep Excavations of Subway Constructions," Geotechnical
    and Geophysical Site Characterization, Proceeding of the 3rd International
    Conference on Site Characterization, Taipei, Taiwan, pp.31-59, 2008.
    25. Ishihara, K., "Liquefaction and Flow Failure During Earthquakes"
    Geotechnique, Vol.43, No.3, pp.315-415, 1993.
    26. Ishihara, K., Troncoso, J., Kawase, Y. and Takahashi, Y., "Cyclic
    Strength Characteristics of Tailing Materials," Soil and Foundations, pp.
    127-142, 1980.
    27. Ishihara, K., "Liquefaction and Flow Failure During Earthquakes",
    Geotechnique, Vol.43, No.3, pp.315-415, 1993.
    28. Kenney, T. C. and Lau, D. "Discussion on Internal Stability of Granular
    Filters" Can. Geotech. J. 23,420-423, 1986.
    29. Kenney, T. C. and Lau, D. "Internal Stability of Granular Filters." Can.
    Geotech. J. 22,215-225, 1985.
    30. Lee, K. L. and Fitton, J. A., "Factors Affecting the Cyclic Loading
    Strength of Soil," Vibration Effects of Earthquakes on Soils and
    Foundations, ASTM STP 450, pp.71-95, 1969.
    31. Mulilis, J. P., "The Effect of Method of Sample Preparation on the Cyclic
    Stress-Strain Behavior of Sands," Report No. EERC 75-18, U. C.
    Berkeley Earthquake Engineering Research Center, 1975.
    32. Mulilis, J.P., Seed, H.B., Chan, C.K., Mitchell, J.K. and Arulanandan,K.,
    "Effects of Sample Preparation on Sand Liquefaction," Journal of the
    Geotechnical Engineering Division, ASCE, Vol.103, GT2, pp.91-108 ,
    1977.
    33. Peacock, W. H., and Seed, H. B., "Sand Liquefaction Under Cyclic
    Loading Simple Shear Conditions, "Journal of the Soil Mechanics and
    Foundations Division, ASCE, Vol. 94 (SM3), 689-708, 1968.
    34. Sandoval, J., Liquefaction and settlement characteristics of silt soils, Ph.D
    thesis, University of Missouri-Rolla, Mo, 1989.
    35. Seed, H. B., "Evaluation of Soil Liquefaction Effects on Level Ground
    during Earthquakes," Liquefaction Problems in Geotechnical Engineering,
    pp. 1-104, 1976.
    36. Seed, H. B. and Lee, K. L., "Liquefaction of Saturated Sands during
    Cyclic Loading," Journal of the Soil Mechanics and Foundation Division,
    ASCE, Vol. 92, No. SM6, pp. 105-134, 1966.
    37. Shen, C. K., Vrymoed, J. L. and Uyeno, C. K., "The Effect of Fines on
    Liquefaction of Sands", Proceeding of the Ninth International Conference
    on Soil Mechanics and Foundation Engineering, Vol. 2, pp.381-385,
    1977.
    38. Sherard, J. L., et al., "Identification and Nature of Dispersive Soils,"J.
    Geotech. Eng. Div., ASCE, Vol 102, No. GT-4, pp. 287-301, 1976.
    39. Sherard, J. L., et al., "Pinhole Test for Identifying Dispersive Soils,"J.
    Geotech. Eng. Div., ASCE, Vol 102, No. GT-1, pp. 69-85, 1976.
    40. Tianqiang Guo, Shamsher Prakash, "Liquefaction of Silts and Silt-Clay
    Mixtures, "Journal of Geotechnical and Geoenvironmental Engineering,
    ASCE, Vol. 125, pp.706-710, 1999.
    41. Vaid, Y. P., Chern, J. C. and Tumi, H., "Confining Pressure, Grain
    Angularity and Liquefaction," Journal of Geotechnical Engineering,
    ASCE, Vol. 111, No. 10, pp. 1229-1235 , 1985.
    42. Vaid, Y. P., Chern, J. C. and Tumi, H., "Confining Pressure, Grain
    Angularity and Liquefaction," Journal of Geotechnical Engineering,
    ASCE, Vol. 111, No. 10, pp. 1229-1235, 1985.
    43. Yamamuro J.A. and Covert K.M. "Monotonic and Cyclic Liquefaction of
    Very Loose Sands with High Silt Content," Journal of Geotechnical and
    Geoenvironmental Engineering, Vol.127, No.4, pp. 314-324, 2001.

    下載圖示 校內:2016-08-24公開
    校外:2016-08-24公開
    QR CODE