| 研究生: |
林煒喬 Lin, Wei-Ciao |
|---|---|
| 論文名稱: |
不同圍壓狀態對低塑性粉土內部沖蝕性質之影響 The Influence of Confining Pressure on Internal Erosion of Low Plastic Silty Sands |
| 指導教授: |
陳景文
Chen, Ying-Wun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 低塑性粉土 、內沖蝕效應 、Flexible Wall Pinhole 試驗 |
| 外文關鍵詞: | low plastic silt, internal erosion effects, Flexible Wall Pinhole tests |
| 相關次數: | 點閱:130 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
低塑性粉土為台灣西南部地區土層常見之細粒料,因其具有顆粒細小、
塑性低的特性,低塑性粉土層受內部水流沖蝕作用時,細粒料易造成流
失,使土壤孔隙增大,強度發生弱化現象,進而引致許多深開挖管湧工
程災害,故有必要針對低塑性粉土的內沖蝕效應做更深入的探討,以提
供工程設計施工參考。
本研究以Flexible Wall Pinhole(簡稱FWP)試驗儀,採用高雄苓雅
區之低塑性粉土,經由控制不同試體條件(FC=0、20 及40%,Dr=60 及
85%),探討各種有效應力狀態下(σc’=100、150 及200kPa)對土壤內沖蝕
性質之影響。
根據試驗結果發現,對會發生內沖蝕破壞之土樣而言,試體在相同
低塑性細粒料含量條件下,其剪力強度及抗內沖蝕能力會隨有效圍壓增
加而提高,而隨著試體緊密程度的提高,抗沖蝕能力也隨之提高;在相
同有效圍壓與相對密度條件下,臨界沖蝕壓力有隨細粒料含量增加而降
低之趨勢,且隨著細粒料含量增加,試體受內沖蝕作用後之剪力強度摩
擦角及強度衰減比皆有下降的趨勢,可見細粒料含量對土壤抗沖蝕能力
有不利的影響;最後,在土樣適用性之討論方面,本研究分別採用日本
神奈川縣土壤與高雄苓雅區土樣進行比對,試驗結果顯示,土壤之抗沖
蝕能力受土壤顆粒組構型態影響較大,而受土樣來源的影響較小。
綜合以上結果可知,FWP 試驗法可用於探討不同地區土壤之內沖蝕
性質,對於低塑性粉土而言,可藉由降低地下水位差與提高土層密度等
方法,增加其抗內沖蝕作用之能力。
Low plasticity silt soil is quite popular in the stratum in southwestern of
Taiwan. Due to the characteristic of fine grain and low plasticity, it can easy
lose by internal erosion effects. The low plastic silty sand has caused disasters
in several deep excavation projects in Taiwan.
In this study, the Flexible Wall Pinhole tests were conducted under
different confining pressures to investigate internal erosion effects of different
samples conditions. The samples of low plasticity silt were collected from
Kaohsiung Lingya district.
Based on test results, the shear strength and the internal erosion resistance
of disturbance samples were increasing as the confining pressures and the
degree of soil tightness increased. In the same confining pressures and relative
density conditions, the critical erosion pressures had decreasing trend as the
fine content of sample increased. In addition, with the increase of fine content,
the erosion samples’ shear strength decay was evident. In the applicability of
different soil strata, using Kanagawa soil in Japan and Lingya District soil in
Kaohsiung conducted FWP test. According to the test data, the internal
erosion resistance of different soil strata had greater relation with particle size
distribution curve than the source of soil.
In summary, FWP test can be used to explore the property of internal
erosion from different area soil. For low plastic silt, reducing the groundwater
level and increasing the soil density can increase its internal erosion
resistance.
1. 吳偉特、楊騰芳,「細粒料含量在不同程度影響因素中對台灣地區沉積
性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74 頁,
1987。
2. 周鴻昇,「NGI 單剪應力定體積與不排水狀況下砂土行為之研究」,國
立台灣大學土木工程系研究所,碩士論文,1994。
3. 林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,國立成功大學土
木工程系研究所,碩士論文,2006。
4. 陳嘉裕,「細粒料含量對沙土浪化潛能之影響研究」,國立成功大學土
木工程學研究所,碩士論文,1999。
5. 倪勝火,國立成功大學土壤力學實驗手冊,2006。
6. 夏啟明,「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,國立
台灣大學土木工程研究所,碩士論文,1992。
7. 財團法人臺灣營建研究院,「高雄捷運工程橘線CO2 區段標LUO09 潛
盾隧道坍陷原因鑑定報告」,2006。
8. 財團法人臺灣營建研究院,「高雄捷運工程橘線CO1 區段標SUO01 車
站連續壁滲水坍塌事故再分析與對應契約影響之研究報告」,2007。
9. 游家豪,「低塑性細料對粉質砂土動態性質之影響」,國立成功大學土
木工程系研究所,碩士論文,2007。
10.曾顯琳,「過壓密對砂土穩定狀態及液化阻抗之影響」,國立台灣工業
技術學院營建工程技術研究所,碩士論文,1997。
11.黃安斌,林志平,紀雲曜,古志生,蔡錦松,李德河,林炳森, 「台灣中西部粉
土細砂液化行為分析」, 地工技術, 第103 期, 第5-30 頁,2005。
12.葉向陽,分散性黏土及其處理方式,現代營建雜誌,地下工程實務(二),
122
台灣,台北,1985。
13.楊騰芳,「細粒料在過壓密及前期微震作用下對飽和殺性土壤液化潛能
之影響」,國立台灣大學土木工程研究所,碩士論文,1986。
14.萬鼎工程公司,「高雄捷運紅橘線路網補充地質調查工程地質調查報告
書」,2001。
15.潘家錚主編,土石壩,水利電力出版社,中國,北京,1992。
16.廖元憶,「台灣西南沿海高細粒料含量砂土的探討」,國立成功大學土
木工程系研究所,碩士論文,2005。
17.蕭吉良,低塑性粉土內部沖蝕性質之研究」,國立成功大學土木工程系
研究所,碩士論文,2010。
18.ASTM Standard D4221-99 Standard Test Method for Dispersive
Characteristics of Clay Soil by Double Hydrometer. ASTM
International,West Conshohocken, PA. www.astm.org, 2005.
19. ASTM Standard D4647-06 Standard Test Method for Identification and
Classification of Dispersive Clay Soils by the Pinhole Test. ASTM
International,West Conshohocken, PA. www.astm.org, 2006.
20. ASTM Standard D6572-06 Standard Test Methods for Determining
Dispersive Characteristics of Clayey Soils by the Crumb Test. ASTM
International,West Conshohocken, PA. www.astm.org, 2006.
21. Chang, N. Y., Yeh, S. T. and Kaufman, L. P., "Liquefaction Potential of
Clean and Silty Sands," Proceedings of the Third International Earthquake
Microzonation Conference, Vol. 2, pp.1017-1032, 1982.
22. Decker, R.S. and Dunnigan, L.P.,"Dispersive and Use of the SCS
Dispersion Test,"Paper Submitted for ASTM Symposium on Dispersive
Clay, June, 1976.
23. Erten, D., and Mather, M. H., "Cyclic Undrained Behavior of Silty Sand,"
Soil Dynamics and Earthquake Engineering, Vol. 14, pp.115-123, 1995.
24. Ishihara, K. and Lee, W. F. "Forensic Diagnosis for Site-Specific Ground
conditions in Deep Excavations of Subway Constructions," Geotechnical
and Geophysical Site Characterization, Proceeding of the 3rd International
Conference on Site Characterization, Taipei, Taiwan, pp.31-59, 2008.
25. Ishihara, K., "Liquefaction and Flow Failure During Earthquakes"
Geotechnique, Vol.43, No.3, pp.315-415, 1993.
26. Ishihara, K., Troncoso, J., Kawase, Y. and Takahashi, Y., "Cyclic
Strength Characteristics of Tailing Materials," Soil and Foundations, pp.
127-142, 1980.
27. Ishihara, K., "Liquefaction and Flow Failure During Earthquakes",
Geotechnique, Vol.43, No.3, pp.315-415, 1993.
28. Kenney, T. C. and Lau, D. "Discussion on Internal Stability of Granular
Filters" Can. Geotech. J. 23,420-423, 1986.
29. Kenney, T. C. and Lau, D. "Internal Stability of Granular Filters." Can.
Geotech. J. 22,215-225, 1985.
30. Lee, K. L. and Fitton, J. A., "Factors Affecting the Cyclic Loading
Strength of Soil," Vibration Effects of Earthquakes on Soils and
Foundations, ASTM STP 450, pp.71-95, 1969.
31. Mulilis, J. P., "The Effect of Method of Sample Preparation on the Cyclic
Stress-Strain Behavior of Sands," Report No. EERC 75-18, U. C.
Berkeley Earthquake Engineering Research Center, 1975.
32. Mulilis, J.P., Seed, H.B., Chan, C.K., Mitchell, J.K. and Arulanandan,K.,
"Effects of Sample Preparation on Sand Liquefaction," Journal of the
Geotechnical Engineering Division, ASCE, Vol.103, GT2, pp.91-108 ,
1977.
33. Peacock, W. H., and Seed, H. B., "Sand Liquefaction Under Cyclic
Loading Simple Shear Conditions, "Journal of the Soil Mechanics and
Foundations Division, ASCE, Vol. 94 (SM3), 689-708, 1968.
34. Sandoval, J., Liquefaction and settlement characteristics of silt soils, Ph.D
thesis, University of Missouri-Rolla, Mo, 1989.
35. Seed, H. B., "Evaluation of Soil Liquefaction Effects on Level Ground
during Earthquakes," Liquefaction Problems in Geotechnical Engineering,
pp. 1-104, 1976.
36. Seed, H. B. and Lee, K. L., "Liquefaction of Saturated Sands during
Cyclic Loading," Journal of the Soil Mechanics and Foundation Division,
ASCE, Vol. 92, No. SM6, pp. 105-134, 1966.
37. Shen, C. K., Vrymoed, J. L. and Uyeno, C. K., "The Effect of Fines on
Liquefaction of Sands", Proceeding of the Ninth International Conference
on Soil Mechanics and Foundation Engineering, Vol. 2, pp.381-385,
1977.
38. Sherard, J. L., et al., "Identification and Nature of Dispersive Soils,"J.
Geotech. Eng. Div., ASCE, Vol 102, No. GT-4, pp. 287-301, 1976.
39. Sherard, J. L., et al., "Pinhole Test for Identifying Dispersive Soils,"J.
Geotech. Eng. Div., ASCE, Vol 102, No. GT-1, pp. 69-85, 1976.
40. Tianqiang Guo, Shamsher Prakash, "Liquefaction of Silts and Silt-Clay
Mixtures, "Journal of Geotechnical and Geoenvironmental Engineering,
ASCE, Vol. 125, pp.706-710, 1999.
41. Vaid, Y. P., Chern, J. C. and Tumi, H., "Confining Pressure, Grain
Angularity and Liquefaction," Journal of Geotechnical Engineering,
ASCE, Vol. 111, No. 10, pp. 1229-1235 , 1985.
42. Vaid, Y. P., Chern, J. C. and Tumi, H., "Confining Pressure, Grain
Angularity and Liquefaction," Journal of Geotechnical Engineering,
ASCE, Vol. 111, No. 10, pp. 1229-1235, 1985.
43. Yamamuro J.A. and Covert K.M. "Monotonic and Cyclic Liquefaction of
Very Loose Sands with High Silt Content," Journal of Geotechnical and
Geoenvironmental Engineering, Vol.127, No.4, pp. 314-324, 2001.