簡易檢索 / 詳目顯示

研究生: 陳衍豪
Chen, Yen-Hao
論文名稱: Ba(Mg(1-x)/3Cox/3Nb2/3)O3 陶瓷材料的有序化行為研究
Ordering Kinetics of Ba(Mg(1-x)/3Cox/3Nb2/3)O3 Ceramics
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 88
中文關鍵詞: 微波介電鈣鈦礦有序無序動力學
外文關鍵詞: microwave dielectric, perovskite, order-disorder, kinetics
相關次數: 點閱:117下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A(B’1/3B’’2/3)O3 複合鈣鈦礦微波介電陶瓷的品質因子,與其晶體結構中 B 位置陽離子的有序程度存在著很大的關聯性。而材料的有序化行為一般被認為與熱處理條件有關,但這方面的關聯性卻鮮少以動力學的模式進行研究。本研究以高溫熱處理及淬冷 (quench) 的方法探討了Ba(Mg(1-x)/3Cox/3Nb2/3)O3 陶瓷材料的1:2 有序化動力學行為。研究中的 x = 0.3、 0.5及 0.7 成分點,在有序─無序相轉換溫度以下的 1200 - 1400oC 之間,隨著熱處理的時間增加,有序化程度隨之上升,各個成分在各個溫度的有序化速率也有所不同,反映了有序化行為並非僅具熱力學平衡機制,也必須考慮動力學條件。由成核成長的動力學計算,有序化行為是由 domain boundary motion控制,在初期已達到成核飽和狀態,成長的速率隨著 Co2+取代量增加而下降。研究中也指出了有序─無序轉換溫度也是隨著Co2+的添加量而下降,其趨勢與 Ba(Mg1/3Nb2/3)O3 和 Ba(Co1/3Nb2/3)O3的相轉換溫度之連線相似。在到達相轉換溫度之前,有一個有序程度隨溫度上升而漸退的區間,此區間隨著熱處理時間拉長而縮小,在固定熱處理時間為 4 小時的情況下,寬度約為 100oC 左右。

    It is believed that there is a connection between quality factor and ordering of B cations in A(B’1/3B’’2/3)O3. perovskites. Nevertheless, there are only few kinetic studies in ordering behavior. In this research, ordering behavior of Ba(Mg(1-x)/3Cox/3Nb2/3)O3 was studied by annealing and quench at high temperature. In the study that Ba(Mg(1-x)/3Cox/3Nb2/3)O3 whose x = 0.3, 0.5 and 0.7 annealed at the temperature between 1200 – 1400oC, ordering degrees of Ba(Mg(1-x)/3Cox/3Nb2/3)O3 raised up with prolonging of annealing time . The rate of ordering varies with the given composition and annealing temperature. Therefore, besides thermodynamic factors, it should take kinetic factors into consideration.According to the kinetic analysis, ordering of Ba(Mg(1-x)/3Cox/3Nb2/3)O3 is controlled by domain boundary motion. And the rate of ordering decreases with increasing of the amount of Co2+ substitution. It also reveals that phase transition temperature of order-disorder decreases with the increasing of the amount Co2+ substitution. Before reaching to the phase transition temperature, there is a temperature range where ordering degrees of samples decrease when it was heated up. And width of the range reduces with the prolonging of annealing time. In the situation that annealing time was 4 hours, the range is about 100oC .

    總目錄 中文摘要 I Abstract II 誌謝 III 總目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 前人研究及理論基礎 5 2-1 A(B’1/3B’’2/3)O3 複合鈣鈦礦 5 2-1-1 A(B’1/3B’’2/3)O3的晶體結構與有序排列現象 5 2-1-2 A(B’1/3B’’2/3)O3的有序無序轉換溫度 10 2-1-3 A(B’1/3B’’2/3)O3的有序化動力學研究 11 2-1-4結晶化學的觀點 18 2-1-5 Antiphase Boundary與 Ferroelastic Boundary 19 2-2 序化晶體的繞射分析 22 2-3 動力學分析方法 27 2-3-1 相轉換反應速率方程式[31] 27 2-3-2 Arrhenius 方程式 29 第三章 實驗方法及分析 30 3-1 起始原料 30 3-2 實驗流程 30 3-2-1 粉末製備 30 3-2-2 粉末之熱重/熱差分析 31 3-2-3 粉末之熱處理與淬冷 31 3-3 粉末特性分析 36 3-3-1 X光粉末繞射分析 36 3-3-2 掃描式電子顯微鏡 38 3-3-3 穿透式電子顯微鏡 38 第四章 結果與討論 40 4-1 粉末的熱重與熱差分析 40 4-2 有序程度的變化與有序無序轉換 43 4-2-1 不同變因對有序程度的影響 43 4-2-2 有序相的成長動力學分析 54 4-2-3 時間─溫度─相轉換圖 (Time-temperature-transformation diagram) 61 4-2-4 有序─無序相轉換溫度探討 63 4-3 顯微結構觀察分析 67 4-4 晶體結構分析 75 4-5 有序機制的探討 80 第五章 結論 81 參考文獻 82

    1. B. M. Jacobson, B. E. Collins and F. Fender, “A Powder Neutron and X-ray Diffraction Determination of the Structure of Ba3Ta2ZnO9: An Investigation of Perovskite Phase in the System Ba-Ta-Zn-O and the Preparation of Ba2TaCdO5.5 and Ba2CeInO5.5,” Acta Crystallogr. B, 32, 1083-1087, (1976).
    2. M. Furuya, “Microwave Dielectric Properties and Phonon Characteristics of Ba(Mg1/3Ta2/3)O3-A(Mg1/2W1/2)O3 (Aba, Ca, Sr) Ceramics,” J. Kor. Phys. Soc., 32, S353-S357, (1998).
    3. S. A. Sagala and S. Kayasu, “Infrared Reflection of Ba(Mg1/3Ta2/3)O3 Ceramics,” J. Am. Ceram. Soc., 76, 2433-2436, (1993).
    4. Y.-K. Im, K.-M. Lee and H. M. Jang, “B Site Cation Ordering and Associated Defect Processes in WO3 Doped Ba(Mg1/3Ta2/3)O3,” J. Kor. Phys. Soc., 32, S292-S295, (1988).
    5. E. S. Kim and K. H. Yoon, “Microwave Dielectric Properties of Complex Perovskite Ba(Mg1/3Ta2/3)O3,” Ferroelectrics, 133, 187-192, (1992).
    6. K. Tochi, S. Nakamura, T. Ohgaku and N. Takeuchi, “Lattice Vibration Modes of (1-x)Ba(Zn1/3Ta2/3)O3-xBaZrO3,” J. Mater. Sci. Lett., 8, 1144-1146, (1989).
    7. S. Kawashima, M. Nishida, I. Ueda and H.Ouchi, “Ba(Zn1/3Ta2/3)O3 Ceramics with Low Dielectric Loss at Microwave Frequency,” J. Am. Ceram. Soc., 66, 421-423, (1983).
    8. D. J. Barber, K. M. Moulding, J. Zhou and M.Q. Li, ” Structural Order in Ba(Zn1/3Ta2/3)O3, Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Ta2/3)O3 Microwave Dielectric Ceramics” J. Mater. Sci., 32, [6], 1531-1544, (1997).
    9. H. Yoshioka, “Ordering of Cations in Ba(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3,” Bull. Chem. Soc. Jpn., 60, 3433-3434 (1987).
    10. K. S. Hong, I. T. Kim and C. D. Kim, "The Order-Disorder Formation in the Complex Perovskite Compounds, Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3," J. Am. Ceram. Soc. 79, [12], 3218-3224, (1996).
    11. 林勇名,Ba[Mg(1-x)/3Cox/3Nb2/3]O3 陶瓷材料的結構與微波介電性質,國立成功大學資源工程研究所碩士論文 (2008)。
    12. F. Galasso, Structure and Properties of Inorganic Solid; pp. 168-76. Pergamon Press, New York, 1970.
    13. J. Chen, H.M. Chan and M. P. Hamer, “Ordering Structure and Dielectric Properties of Undoped and La/Na-Doped
    14. M. A. Akbas, P. K. Davies, “Structure and Dielectric Properties of the Ba(Mg1/3Nb2/3)O3-La(Mg1/3Nb2/3)O3 System,” J. Am. Ceram. Soc., 81, [8], 2205-2208, (1998).
    15. L. Chai, M. A. Akbas, P. K. Davies and J.B. Parise, “ Cation Ordering Transformation in Ba(Mg1/3Ta2/3)O3-BaZrO3 Perovskite Solid Solutions,” Mater. Res. Bull., 32, [9], 1261-1269, (1997).
    16. F. Galasso and J. Pyle, “Preparation and Study of Ordering in A(B'0.33Nb0.67)O3Perovskite-type Compounds,” J. Phys. Chem., 67, [7], 1561-1562, (1963).
    17. T. Hiuga and K. Matsumoto, “Ordering of Ba(B1/3, B2/31)O3 Ceramics and Their Microwave Dielectric Properties,” Jpn. J. Appl. Phys. 28, 56-58, (1989).
    18. D. J. Barber, K. M. Moulding, J. Zhou and M.Q. Li, ” Structural Order in Ba(Zn1/3Ta2/3)O3, Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Ta2/3)O3 Microwave Dielectric Ceramics” J. Mater. Sci., 32, [6], 1531-1544, (1997).
    19. H. Yoshioka, “Ordering of Cations in Ba(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3,” Bull. Chem. Soc. Jpn., 60, 3433-3434 (1987).
    20. K. S. Hong, I. T. Kim and C. D. Kim, "The Order-Disorder Formation in the Complex Perovskite Compounds, Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3," J. Am. Ceram. Soc. 79, [12], 3218-3224, (1996).
    21. I. Molodetsky, P. K. Davies, “Effect of Ba(Y1/2Nb1/2)O3 and BaZrO3 on the cation order and properties of Ba(Co1/3Nb2/3)O3microwave ceramics,” J. Eur. Ceram. Soc., 21, [15], 2587-2591, (2001).
    22. U. Treiber, S. Kemmler-Sack, “Über Ordnungs-Unordnungsphänom- -ene bei Sauerstoff perowskiten vom Typ A3BM2O9 (German),” J. Solid. State Chem., 43, 51-62, (1982).
    23. T. Kolodiazhnyi and A. Petric, “ Synthesis and Dielectric Properties of Barium Tantalates and Niobates with Complex Perovskite Structure,” J. Mater. Res., 17, [12], 3182-3189, (2002).
    24. J. Venkatesh, V. Sivasubramanian, V. Subramanian and V.R.K. Murthy, “Far-IR reflectance study on B-site disordered Ba (Zn1/3Ta2/3)O3 dielectric resonator,” Mater. Res. Bull., 35, [8], 1325-1332, (2000).
    25 . I. Qazi, I. M. Reaney, W. E. Lee, “Order–disorder phase transition in Ba(Zn1/3Ta2/3)O3,” J. Eur. Ceram. Soc., 21, [15], 2613-2616, (2001).
    26. Ian M. Reaney, Enrico L. Colla and Nava Setter, “Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor,” Jpn. J. Appl. Phys., 33, 3984-3990, (1994).
    27. B. P. Burton, “Empirical Cluster Expansion Model of Cation Order-Disorder in A(B’1/3B’’2/3)O3 Perovskites,” Phys. Rev. B, 59, 6087-6091, (1999).
    28. B. P. Burton, “Why Pb(BB’’)O3 Perovskite disorder at a lower temperature than Ba(B,B’)O3 Perovskites,” Phys. Rev. B, 60, 12542-12545, (1999).
    29. Takeshi Takahashi, Eric J. Wu, Anton Van Der Ven and Gerbrand Ceder, “First-principles Investigation of B-site Ordering in Ba(MgxTa1-x)O3 Microwave Dielectrics with the Complex Perovskite Structure,” Jpn. J. Appl. Phys., 39, 1241-1248, (2000).
    30. T. Takahashi, “First-principles Investigation of the Phase Stability for Ba(B1/3′2+B2/3′′5+)O3 Microwave Dielectrics with the Complex Perovskite Structure,” Jpn. J. Appl. Phys., 39, 5637-5641, (2000).
    31. A. Putnis, Introduction to mineral science, Cambridge University Press, (1992).
    32. F. Galasso, Structure and Properties of Perovskite Compounds, Pergamon Press, Headington Hill, Oxford, (1969).
    Pb(Mg1/3Nb2/3)O3,” J. Am. Ceram. Soc., 72, [4], 593-598, (1989).
    33. M. Bieringer, S. M. Moussa, L. D. Noailles, A. Burrows, C. J. Kiely, M. J. Rossiensky, and R. M. Ibberson, “Cation Ordering, Domain Growth and Zinc Loss in the Microwave Dielectric Oxide Ba3ZnTa2O9-,” Chem. Mater., 15, [3], 586-587, (2003).
    34. S. Moussa, R.M. Ibberson, M. Bieringer, A. N. Fitch, and M. J. Rossiensky, “In Situ Measurements of Cation Order and Domain Growth in an Electroceramic,” Chem. Mater., 15, [13], 2527-33, (2003).
    35. R. M. Ibberson, S. M. Moussa, M. J. Rossiensky, A. N. Fitch, D. Iddles and T. Price, “In Situ Neutron and X-ray Diffraction Study of Cation Ordering and Domain Growth in the Dielectric Ceramic Ba3ZnTa2O9-Sr2GaTaO6,” J. Am. Ceram. Soc., 89, [6], 1827-1833, (2006).
    36. Phillip M. Mallinson, John B. Claridge, Mattew J. Rosseinsky, Richard M. Ibberson, Jonathan P. Wright, and Andrew N. Fitch, “High Temperature Processing of Ba3ZnTa2O9: an In situ Study Using Synchrotron X-ray Powder Diffraction,” Chem. Mater., 19, 4731-4740, (2007).
    37. P. M. Mallinson, J. B. Claridge, and M. J. Rosseinsky, “Cation ordering/disordering kinetics in Ba3CoNb2O9: An in situ study
    using synchrotron x-ray powder diffraction,” Applied Physics letters 91, 222901 ,(2007).
    38. G. A. Smolensky, I. G. Siny, R. V. Pisarev and E. G. Kuzrninov, “Raman Scattering in Ordered and Disordered Perovskite Type Crystals,” Ferroelectrics, 12, 135-136, (1976).
    39. M. Sugiyama, T. Inuzuka and H. Kubo, “Effects of Processing on Microstructure and Dielectric Properties in Ba(Mg1/3Ta2/3)O3 Ceramics,” Ceram. Trans., 15, 153-166, (1990).
    40. C. H. Lei, S. Amelinckx and G. Van Tendeloo, “Disordered Ba(Mg1/3Ta2/3)O3 and Its Ordering Transition,” Phil. Mag. A, 82, [20], 2321-2332, (2002).
    41. F. Galasso and W. Darby, “Ordering of the Octahedrally Coordinated Cation. Position in the Perovskite Structure,” J. Phys. Chem., 66, 131-132, (1962).
    42. H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, J. H. Paik, S. Nahm, and J. D. Byun, “Microstructure of Lanthanum Magnesium Niobate at Elevate Temperature,” J. Am. Ceram. Soc., 83, [4], 943-945, (2000).
    43. H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, J. H. Paik, S. Nahm, and J. D. Byun, “Two Types of Domain Boundaries in Lanthanum Magnesium Niobate,” J. Am. Ceram. Soc., 83, [11], 2875-2877, (2000).
    44. O. Prytz and J. Tafto, “Accurate Determination of Orientation Relationships between Ferroelastic Domains: The Tetragonal to Monoclinic Transition in LaNbO4 as an example,” Acta Mat., 53, 297-302, (2005).
    45. O. Muller and R. Roy, The Major Ternary Structural Families, Springer, New York (1974).
    46. 吳泰伯、許樹恩,X光繞射原理與材料結構分析,中國材料科學學會 (1996)。
    47. 余樹楨,晶體之結構與性質,國立編譯館 (1989)。
    48. C. H. Lu, and C. C. Tsai, “Reaction Kinetics, Sintering Characteristics, and Ordering Behavior of Microwave Dielectrics: Barium Magnesium Tantalite,” J. Mater. Res., 11, 1219–1227 (1996).
    49. 吳天傑,Ba(Mg1/3Nb2/3)O3與Ba(Co1/3Nb2/3)O3陶瓷材料之製備、結構與微波介電性質,國立成功大學資源工程研究所碩士論文(2008)。
    50. N. Setter, L. E. Cross, “The contribution of structural disorder to diffuse phase transitions in ferroelectrics,” J. Mater. Sci., 15, 2478-2482 (1980).
    51. T. Ozawa, “Kinetic analysis of derivative curve in thermal analysis,” J. Thermal Anal., 2, 301 (1970).
    52. C. Y. Huang, Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure type Materials, Ph. D. Thesis, The Pennsylvania State University, U.S.A. (1990).

    下載圖示 校內:立即公開
    校外:2012-08-31公開
    QR CODE