| 研究生: |
郭明澤 Kuo, Ming-Tse |
|---|---|
| 論文名稱: |
以淚液拉曼光譜及寡核苷酸DNA陣列晶片評估感染性角膜炎 Assessment of Microbial Keratitis using Raman Spectra of Tears and Oligonucleotide DNA Array |
| 指導教授: |
張長泉
Chang, Tsung-Chain 張憲彰 Chang, Hsien-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 淚液 、感染性角膜炎 、拉曼光譜 、寡核苷酸DNA陣列晶片 |
| 外文關鍵詞: | tears, microbial keratitis, Raman spectrum, oligonucleotide DNA array |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
早期正確診斷與治療是避免感染性角膜炎造成失明的關鍵。傳統診斷包括病史詢問推斷,細隙燈下病灶形態的研判,角膜病灶刮除清創採樣以進行抹片鏡檢及微生物的培養。拉曼平台能使微量物質甚至是液態下表現其特有的光譜鑑識指紋,而寡核苷酸陣列晶片具備高度物種辨識特性。故本研究應用拉曼光譜顯微鏡以及寡核苷酸陣列晶片對感染性角膜炎致病原因輔助鑑別診斷,發展感染性角膜炎病因診斷上,不同階段及不同層次之快速鑑別診斷方法。在拉曼平台上,吾人以合成淚液含參考菌株進行體外模擬試驗,測試並發展出最佳之光譜鑑別方式。在寡核苷酸陣列晶片研究上,吾人以感染性角膜炎常見感染菌為研究標的,對已設計及新設計之探針,以純培養之參考菌株,訓練及測試出高敏感度及高特異性之陣列晶片。臨床檢體之實測上,本試驗透過淚液檢體、角膜刮除檢體與培養後的微生物檢體為標的檢體,以拉曼光譜顯微鏡平台及寡核苷酸陣列晶片對感染性角膜炎之病患進行快速病因鑑別診斷。吾人以毛細管採集淚液樣本,對健康自願者、非感染性角膜炎之眼表疾患、及感染性角膜炎患者,將1.5微升淚滴在拉曼檢測基材上,以拉曼光譜顯微鏡獲取光譜訊號。以Microsoft Excel 2007軟體建構光譜資料庫,並運用Matlab R2008a軟體進行多變項分析。將感染性角膜炎患者清創後之剩餘刮除檢體,以單對分別(singleplex)或多對一起(multiplex)對rRNA基因或其內轉錄區放大,研究寡核苷酸陣列晶片之最佳診斷條件。根據目前的結果,淚液拉曼光譜平台具備30分鐘內判定感染與否的診間輔助診斷應用潛力,惟提升至分辨菌屬的解析度,仍有待累積更多相同感染菌個案方能有效驗證,如綠膿桿菌角膜炎。感染性角膜炎寡核苷酸陣列晶片之部份,尤其是真菌與棘狀阿米巴,顯示出高度臨床應用價值,可縮短診斷感染菌類或菌種時間至4-6小時。若加上影像判別處理,將使有效診斷涵蓋面擴及常見之細菌性角膜炎致病菌種。
Microbial keratitis is a vision-threatening disease. It needs prompt etiologic diagnosis and treatment. Conventional diagnostic approach for microbial keratitis needs direct microscope evaluation and laboratorial experts’ identification by culture using the corneal or conjunctival scraping samples. The invasiveness needs to be concerned, the sensitivity and specificity for this approach are low, and the time may be not rapid enough for some patients. Raman spectroscopy is a qualitatively and quantitatively optical technique by the scattered light to detect the optical fingerprints of molecules in little amount of the sample, even in the liquid status. DNA array, which probes designed in the rRNA gene or the inter-transcribed regions of rRNA gene, is a technology with high species-discrimination performance for cultured microbes. We applied both technologies to assess their roles in the assessment of microbial keratitis. Our motivation is to develop alternative and rapid methods for diagnosis of microbial keratitis. We consecutively collected the tear samples by microcapillary tubes for acquirement of tear Raman spectra from normal volunteers, patients of ocular surface diseases without microbial keratitis, and patients of microbial keratitis. The corneal scraping samples, one half for conventional microbiological survey and the other half for DNA array diagnosis, were collected from patients of ulcerative keratitis, who presumed microbial infection. For 1.5-μl teardrop on the Au/Ti substrate, tear Raman spectra were acquired by Raman microspectroscopy. The spectral database was constructed by Microsoft Excel 2007. The tear Raman spectra for microbial keratitis was analyzed by Matlab 2008a. The singleplex and multiplex PCR for these samples were tuned to find the optimal pathogenic discrimination for corneal scraping samples from presumed microbial keratitis. The reference strains of microbes and clinical isolates are used for the probe design, training, and testing in the DNA array of microbial keratitis. Integration of oligonucleotide probes for pathogens in microbial keratitis, including common bacteria, fungi, and acanthamoeba showed high sensitivity and specificity for discrimination of cultured microbes, especially at the addition of image diagnostic algorithm. The clinical feasibility was tested by comparison with clinical data. The sensitivity and specificity of the DNA array for microbial keratitis will be analyzed by Microsoft Excel 2007. From the results of clinical samples, the Raman platform implied the potential of 30-minute microbial keratitis recognition in the clinical office. However, more clinical cases with the same infectious entity should be cumulated continually for the future goal of pathogen identification, such as Pseudomonas keratitis. Oligonucleotide DNA array for microbial keratitis showed powerfully clinical application, especially in fungal keratitis. We believe the 2 novel diagnostic modalities will greatly influence on the future diagnostic quality of microbial keratitis, preventing more patients from visual loss.
1. Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ 2001;79:214-221.
2. Prajna NV, Mascarenhas J, Krishnan T, et al. Comparison of natamycin and voriconazole for the treatment of fungal keratitis. Arch Ophthalmol 2010;128:672-678.
3. Bharathi M, Ramakrishnan R, Vasu S, Meenakshi R, Palaniappan R. Epidemiological characteristics and laboratory diagnosis of fungal keratitis. A three-year study; Indian J Ophthalmol 2003:315-321.
4. Toshida H, Kogure N, Inoue N, Murakami A. Trends in microbial keratitis in Japan. Eye Contact Lens 2007;33:70-73.
5. Varaprasathan G, Miller K, Lietman T, et al. Trends in the etiology of infectious corneal ulcers at the F. I. Proctor Foundation. Cornea 2004;23:360-364.
6. Fong CF, Tseng CH, Hu FR, Wang IJ, Chen WL, Hou YC. Clinical characteristics of microbial keratitis in a university hospital in Taiwan. Am J Ophthalmol 2004;137:329-336.
7. Gopinathan U, Garg P, Fernandes M, Sharma S, Athmanathan S, Rao G. The epidemiological features and laboratory results of fungal keratitis: a 10-year review at a referral eye care center in South India. Cornea 2002;21:555-559.
8. Sharma N. Therapeutic keratoplasty for microbial keratitis. Curr Opin Ophthalmol 2010;21:293-300.
9. Sun X, Zhang Y, Li R, et al. Acanthamoeba keratitis: clinical characteristics and management. Ophthalmology 2006;113:412-416.
10. Seal DV. Acanthamoeba keratitis update-incidence, molecular epidemiology and new drugs for treatment. Eye 2003;17:893-905.
11. Bharathi MJ, Ramakrishnan R, Meenakshi R, Mittal S, Shivakumar C, Srinivasan M. Microbiological diagnosis of infective keratitis: comparative evaluation of direct microscopy and culture results. Br J Ophthalmol 2006;90:1271-1276.
12. Vengayil S, Panda A, Satpathy G, et al. Polymerase chain reaction-guided diagnosis of mycotic keratitis: a prospective evaluation of its efficacy and limitations. Invest Ophthalmol Vis Sci 2009;50:152-156.
13. Harvey RA, Champe PC, Fisher BD. Lippincott’s Illustrated Reviews: Microbiology. 2 ed: Lippincott Williams & Wilkins; 2007.
14. Chen MT, Wang HZ, Chen CW. Evaluation of the diagnostic value of limulus amoebocyte lysate (LAL) test. Bacterial culture and tissue smear in infectous keratitis. Taiwan J Ophthalmol 1990;29:100-115.
15. Gupta N, Tandon R. Investigative modalities in infectious keratitis. Indian J Ophthalmol 2008;56:209-213.
16. Kuo IC, Cevallos V, Troyer R, Lietman TM, McLeod SD. Efficacy of transport media use versus direct inoculation of blood agar plates in the microbiologic evaluation of experimental Streptococcus pneumoniae keratitis. Cornea 2003;22:249-253.
17. McLeod SD, Kumar A, Cevallos V, Srinivasan M, Whitcher JP. Reliability of transport medium in the laboratory evaluation of corneal ulcers. Am J Ophthalmol 2005;140:1027-1027.
18. Ripa KT, Mardh PA. Cultivation of Chlamydia trachomatis in cycloheximide-treated mccoy cells. J Clin Microbiol 1977;6:328-331.
19. Waxman E. Single culture media in infectious keratitis. Cornea 1999;18:257-261.
20. Byrne K, Burd E. Diagnostic microbiology and cytology of the eye. Boston: Butterworth-Heinemann; 1995.
21. Kanavi MR, Javadi M, Yazdani S, Mirdehghanm S. Sensitivity and specificity of confocal scan in the diagnosis of infectious keratitis. Cornea 2007;26:782-786.
22. Tu EY, Joslin CE, Sugar J, Booton GC, Shoff ME, Fuerst PA. The relative value of confocal microscopy and superficial corneal scrapings in the diagnosis of Acanthamoeba keratitis. Cornea 2008;27:764-772.
23. Parmar DN, Awwad ST, Petroll WM, Bowman RW, McCulley JP, Cavanagh HD. Tandem scanning confocal corneal microscopy in the diagnosis of suspected Acanthamoeba keratitis. Ophthalmology 2006;113:538-547.
24. Kaufman SC, Musch DC, Belin MW, et al. Confocal microscopy: A report by the American Academy of Ophthalmology. Ophthalmology 2004;111:396-406.
25. Prause JU. Serum albumin, serum antiproteases and polymorphonuclear leucocyte neutral collagenolytic protease in the tear fluid of patients with corneal ulcers. Acta Ophthalmol (Copenh) 1983;61:272-282.
26. Tervo T, Salonen EM, Vahen A, et al. Elevation of tear fluid plasmin in corneal disease. Acta Ophthalmol (Copenh) 1988;66:393-399.
27. McNamara NA, Andika R, Kwong M, Sack RA, Fleiszig SM. Interaction of Pseudomonas aeruginosa with human tear fluid components. Curr Eye Res 2005;30:517-525.
28. Ananthi S, Chitra T, Bini R, Prajna NV, Lalitha P, Dharmalingam K. Comparative analysis of the tear protein profile in mycotic keratitis patients. Mol Vis 2008;14.
29. Gebhardt BM, Varnell ED, Kaufman HE. Acetylsalicylic acid reduces viral shedding induced by thermal stress. Curr Eye Res 2004;29:119 -125.
30. Fukuda M, Mishima H, Otori T. Detection of interleukin-1 beta in the tear fluid of patients with corneal disease with or without conjunctival involvement. Japanese J Ophthalmol 1997;41:63-66.
31. Cao Z, Saravanan C, Goldstein MH, et al. Effect of human tears on Acanthamoeba-induced cytopathic effect. Arch Ophthalmol 2008;126:348-352.
32. Eylan E, Ronen D, Romano A, Smetana O. Lysozyme tear level in patients with herpes simplex virus eye infection. Invest Ophthalmol Vis Sci 1977;16:850-853.
33. Raman CV, Kirishnan KS. A new type of secondary radiation. Nature 1928;121:105.
34. Lambert JL, Pelletier CC, Borchert M. Glucose determination in human aqueous humor with Raman spectroscopy. J Biomed Opt 2005;10:031110.
35. Bernstein PS, Zhao D-Y, Wintch SW, Ermakov IV, McClane RW, Gellermann W. Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology 2002;109:1780-1787.
36. Wei F, Zhang D, Halas NJ, Hartgerink JD. Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides. J Phys Chem B 2008;112:9158-9164.
37. Philip RJ, Daniel DS, Michael M, et al. Early detection of cervical neoplasia by Raman spectroscopy. Int J Cancer 2007;121:2723-2728.
38. Kim BS, Lee CCI, Christensen JE, Huser TR, Chan JW, Tarantal AF. Growth, differentiation, and biochemical signatures of rhesus monkey mesenchymal stem cells. Stem Cells Dev 2008;17:185-198.
39. Hogg RE, Zlatkova MB, Chakravarthy U, Anderson RS. Investigation of the effect of simulated lens yellowing, transparency loss and refractive error on in vivo resonance Raman spectroscopy. Ophthal Physiol Opt 2007;27:225-231.
40. Neelam K, O'Gorman N, Nolan J, et al. Measurement of macular pigment: Raman spectroscopy versus heterochromatic flicker photometry. Invest Ophthalmol Vis Sci 2005;46:1023-1032.
41. Taleb A, Diamond J, McGarvey JJ, Beattie JR, Toland C, Hamilton PW. Raman microscopy for the chemometric analysis of tumor cells. J Phys Chem B 2006;110:19625-19631.
42. Aiguo S, Yong Y, Xiaohua W, Changchun C, Hanbin Z, Jiming H. Raman scattering properties of human pterygium tissue. J Biomed Opt 2005;10:024036.
43. Lorincz A, Haddad D, Naik R, et al. Raman spectroscopy for neoplastic tissue differentiation: a pilot study. J Pediatr Surg 2004;39:953-956.
44. Noel JCB, Massoud M, Fred H, James PW. Remote temperature monitoring in ocular tissue using confocal Raman spectroscopy. J Biomed Opt 2005;10:031109.
45. Barhoumi A, Zhang D, Tam F, Halas NJ. Surface-enhanced Raman spectroscopy of DNA. J Am Chem Soc 2008;130:5523-5529.
46. Sharma KD, Andersson LA, Loehr TM, Terner J, Goff HM. Comparative spectral analysis of mammalian, fungal, and bacterial catalases. Resonance Raman evidence for iron-tyrosinate coordination. J Biol Chem 1989;264:12772-12779.
47. Sengupta A, Mujacic M, Davis E. Detection of bacteria by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2006;386:1379-1386.
48. Alexander TA. Development of methodology based on commercialized SERS-active substrates for rapid discrimination of Poxviridae Virions. Anal Chem 2008;80:2817-2825.
49. DeGelder J, Willemse Erix D, Scholtes MJ, et al. Monitoring poly(3-hydroxybutyrate) production in cupriavidus necator DSM 428 (H16) with Raman spectroscopy. Anal Chem 2008;80:2155-2160.
50. Lopez-Diez EC, Winder CL, Ashton L, Currie F, Goodacre R. Monitoring the mode of action of antibiotics using Raman spectroscopy: Investigating subinhibitory effects of amikacin on Pseudomonas aeruginosa. Anal Chem 2005;77:2901-2906.
51. Maquelin K, Kirschner C, Choo-Smith LP, et al. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol 2003;41:324-329.
52. Zhang D, Xie Y, Mrozek MF, Ortiz C, Davisson VJ, Ben Amotz D. Raman detection of proteomic analytes. Anal Chem 2003;75:5703-5709.
53. Filik J, Stone N. Analysis of human tear fluid by Raman spectroscopy. Anal Chim Acta 2008;616:177-184.
54. Filik J, Stone N. Drop coating deposition Raman spectroscopy of protein mixtures. Analyst 2007;132:544-550.
55. Gaudio PA, Gopinathan U, Sangwan V, Hughes TE. Polymerase chain reaction based detection of fungi in infected corneas. Br J Ophthalmol 2002;86:755-760.
56. Embong Z, Wan Hazabbah Wan H, Chan Yean Y, Nur Haslindawaty Abdul R, Balqis K, Siti Khaironi Zainal A. Specific detection of fungal pathogens by 18S rRNA gene PCR in microbial keratitis. BMC Ophthalmol 2008;8.
57. Kumar M. Sensitive and rapid polymerase chain reaction based diagnosis of mycotic keratitis through single stranded conformation polymorphism. Am J Ophthalmol 2005;140:851-857.
58. Kumar M, Shukla PK. Use of PCR targeting of internal transcribed spacer regions and single-stranded conformation polymorphism analysis of sequence variation in different regions of rRNA genes in fungi for rapid diagnosis of mycotic keratitis. J Clin Microbiol 2005;43:662-668.
59. Xie L, Zhong W, Shi W, Sun S. Spectrum of fungal keratitis in North China. Ophthalmology 2006;113:1943-1948.
60. Lin YT, Vaneechoutte M, Huang AH, et al. Identification of clinically important anaerobic bacteria by an oligonucleotide array. J Clin Microbiol 2010;48:1283-1290.
61. Su SC, Vaneechoutte M, Dijkshoorn L, Wei YF, Chen YL, Chang TC. Identification of non-fermenting Gram-negative bacteria of clinical importance by an oligonucleotide array. J Med Microbiol 2009;58:596-605.
62. Ko WC, Lee NY, Su SC, et al. Oligonucleotide array-based identification of species in the Acinetobacter calcoaceticus-A. baumannii Complex in isolates from blood cultures and antimicrobial susceptibility testing of the isolates. J Clin Microbiol 2008;46:2052-2059.
63. Hsiao CR, Huang L, Bouchara JP, Barton R, Li HC, Chang TC. Identification of medically important molds by an oligonucleotide array. J Clin Microbiol 2005;43:3760-3768.
64. Leaw SN, Chang HC, Barton R, Bouchara JP, Chang TC. Identification of medically important Candida and non-Candida yeast species by an oligonucleotide array. J Clin Microbiol 2007;45:2220-2229.
65. Reyes-Goddard JM, Barr H, Stone N. Surface enhanced Raman scattering of herpes simplex virus in tear film. Photodiagnosis Photodyn Ther 2008;5:42-49.
66. Filik J, Stone N. Investigation into the protein composition of human tear fluid using centrifugal filters and drop coating deposition Raman spectroscopy. J Raman spectrosc 2009;40:218-224.
67. Deegan RD, Bakajin O. Capillary flow as the cause for ring stains from dried liquid drops. Nature 1997;389:827.
68. Sariri R, Ghafoori H. Tear proteins in health, disease, and contact lens wear. Biochemistry (Moscow) 2008;73:381-392.
69. Kijlstra A, Jeurissen SH, Koning KM. Lactoferrin levels in normal human tears. Br J Ophthalmol 1983;67:199-202.
70. Chen WJ. Tear lactoferrin content in normal Chinese adults and various ocular diseases. Chinese J Ophthalmol 1989;25:292-295.
71. Lal H, Ahluwalia BK, Khurana AK, Sharma SK, Gupta S. Tear lysozyme levels in bacterial, fungal and viral corneal ulcers. Acta Ophthalmol 1991;69:530-532.
72. Ng V, Cho P, To C. Tear proteins of normal young Hong Kong Chinese. Graefes Arch Clin Exp Ophthalmol 2000;238:738-745.
73. Mackie IA, Seal DV. Diagnostic implications of tear protein profiles. Br J Ophthalmol 1984;68:321-324.
74. Fullard R, Tucker D. Changes in human tear protein levels with progressively increasing stimulus. Invest Ophthalmol Vis Sci 1991;32:2290-2301.
75. Sack RA, Tan KO, Tan A. Diurnal tear cycle: evidence for a nocturnal inflammatory constitutive tear fluid. Invest Ophthalmol Vis Sci 1992;33:626-640.
76. Thaysen J. Excretion of urea, sodium potassium and chloride in human tears. Am J Physiol 1954;178:160-164.
77. Milder B. The lacrimal apparatus. In: Moses R (ed), Adler’s physiology of the eyes: clinical application. St Louis: The C.V. Mosby Company; 1975.
78. Smith E, Dent. G. Modern Raman spectroscopy: a practical approach. Chichester: J. Wiley; 2005.
79. Rossi EE, Silveira Jr L, Barbosa inheiro AL, et al. Raman spectroscopy for differential diagnosis of endophthalmitis and uveitis in rabbit iris in vitro. Exp Eye Res 2010;91:362-368.
80. Lasch P, Kneipp J. Biomedical vibrational spectroscopy: Hoboken, N.J.: Wiley-Interscience; 2008.
81. Bouchara JP, Hsieh HY, Croquefer S, et al. Development of an oligonucleotide array for direct detection of fungi in sputum samples from patients with cystic fibrosis. J Clin Microbiol 2009;47:142-152.
82. Chen CC, Teng LJ, Kaiung S, Chang TC. Identification of clinically relevant viridans streptococci by an oligonucleotide array. J Clin Microbiol 2005;43:1515-1521.
83. Tung SK, Teng LJ, Vaneechoutte M, Chen HM, Chang TC. Identification of species of Abiotrophia, Enterococcus, Granulicatella and Streptococcus by sequence analysis of the ribosomal 16S-23S intergenic spacer region. J Med Microbiol 2007;56:504-513.
84. Bosshard PP, Zbinden R, Abels S, Boddinghaus B, Altwegg M, Bottger EC. 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting Gram-negative bacteria in the clinical laboratory. J Clin Microbiol 2006;44:1359-1366.
85. Lin CC, Kuo MT, Chang HC. Raman spectroscopy - a novel tool for noninvasive ocular surface fluid analysis. J Med Biol Eng 2010;30:343-354.
86. Choo-Smith LP, Edwards HGM, Endtz HP, et al. Medical applications of Raman spectroscopy: From proof of principle to clinical implementation. Biopolymers 2002;67:1-9.
87. Kaye S, Tuft S, Neal T, et al. Bacterial susceptibility to topical antimicrobials and clinical outcome in bacterial keratitis. Invest Ophthalmol Vis Sci 2010;51:362-368.
88. De Gelder J, De Gussem K, Vandenabeele P, Vancanneyt M, De Vos P, Moens L. Methods for extracting biochemical information from bacterial Raman spectra: Focus on a group of structurally similar biomolecules - fatty acids. Anal Chim Acta 2007;603:167-175.
89. Willemse-Erix DFM, Scholtes-Timmerman MJ, Jachtenberg JW, et al. Optical fingerprinting in bacterial epidemiology: Raman spectroscopy as a real-time typing method. J Clin Microbiol 2009;47:652-659.
90. Jayamanne DG, Dayan M, Jenkins D, Porter R. The role of staphylococcal superantigens in the pathogenesis of marginal keratitis. Eye 1997;11:618-621.
91. Özcura F. Successful treatment of staphylococcus-associated marginal keratitis with topical cyclosporine. Graefes Arch Clin Exp Ophthalmol 2010;248:1049-1050.
92. Reading N, Sperandio V. Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 2006;254:1-11.
93. Tam C, Mun JJ, Evans DJ, Fleiszig SMJ. The impact of inoculation parameters on the pathogenesis of contact lens-related infectious keratitis. Invest Ophthalmol Vis Sci 2010;51:3100-3106.
94. Hogan DA. Talking to themselves: Autoregulation and quorum sensing in fungi. Eukaryot Cell 2006;5:613-619.
95. Willcox MDP. Pseudomonas aeruginosa infection and inflammation during contact lens wear: a review. Optom Vis Sci 2007;84:273-278.
96. Diec J, Carnt N, Tilia D, et al. Prompt diagnosis and treatment of microbial keratitis in a daily wear lens. Optom Vis Sci 2009;86:E904-907
97. Graham JE, Moore JE, Jiru X, et al. Ocular pathogen or commensal: a PCR-based study of surface bacterial flora in normal and dry eyes. Invest Ophthalmol Vis Sci 2007;48:5616-5623.
98. Tung SK, Teng LJ, Vaneechoutte M, Chen HM, Chang TC. Array-based identification of species of the Genera Abiotrophia, Enterococcus, Granulicatella, and Streptococcus. J Clin Microbiol 2006;44:4414-4424.
99. Lin MC, Huang AH, Tsen HY, Wong HC, Chang TC. Use of oligonucleotide array for identification of six foodborne pathogens and pseudomonas aeruginosa grown on selective media. J Food Protect 2005;68:2278-2286.
100. Sharma S, Kunimoto DY, Gopinathan U, Athmanathan S, Garg P, Rao GN. Evaluation of corneal scraping smear examination methods in the diagnosis of bacterial and fungal keratitis: a survey of eight years of laboratory experience. Cornea 2002 21:643-647. 101. Kim E, Chidambaram JD, Srinivasan M, et al. Prospective comparison of microbial culture and polymerase chain reaction in the diagnosis of corneal ulcer. Am J Ophthalmol 2008;146:714-723.
102. Ibrahim M, Rafael V, Fuad MI, Livia S, Eloisa M, Luciana M. Epidemiologic aspects and clinical outcome of fungal keratitis in southeastern Brazil. Eur J Ophthalmol 2009;19:355-361.