簡易檢索 / 詳目顯示

研究生: 陳毓茹
Chen, Yu-Ru
論文名稱: AKT在老化過程及學習和記憶形成所扮演的角色
Role of the AKT in the aging process and memory formation
指導教授: 姜學誠
Chinag, Hsueh-Cheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 69
中文關鍵詞: AKT老化阿茲海默症學習記憶cAMP
外文關鍵詞: AKT, aging, Alzheimer’s disease, learning and memory formation, cAMP
相關次數: 點閱:242下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 老化為生理上的不可逆的退化和失能的過程,同時也為阿茲海默症最主要的危險因子。由於全世界在照顧阿茲海默症患者的成本增加,因此對老化的研究及相關藥物治療投入也隨著增加。儘管如此,現今對老化相關的詳細分子機制依然是未解的謎。
    本研究使用果蠅作為研究的動物模型,發現AKT蛋白活性在年老的果蠅中有明顯的增加的現象。在果蠅腦中表達AKT蛋白發現會使果蠅壽命縮短,並讓學習能力明顯降低。相反的,減少腦中AKT蛋白可以挽回因老化所造成學習衰退並且提高在飢餓環境下的生存能力。由先前文獻可以得知Aβ42為阿茲海默症主要的致病因子,我們使用藥物抑制AKT活性發現同樣可以延緩因Aβ42所造成的早死和學習損害的症狀;而AKT主要藉由下游蛋白FOXO逆轉因Aβ42所造成的早死和學習能力受損症狀。
    另外,Aβ42為β-secretases 及γ- secretases分離amyloid beta-protein precursor所產生的。本研究發現 AKT活性與γ-secretases 活性呈正相關。這項發現透露AKT可藉由調控γ-secretases活性做為未來治療阿茲海默症的方法之一。
    另外先前文獻指出cAMP 為主要調控學習記憶的形成。本研究中發現AKT與學習過程有直接相關性。當減少AKT在腦中表現可以挽回因cAMP 失調所造成的學習力受損;同樣的增加cAMP濃度時可以挽回因過度表現AKT所造成的學習受損。本篇研究發現AKT在學習形成過程中主要扮演負調節者的角色。
    總結,此篇研究不僅指出AKT在老化及阿茲海默症病程扮演重要角色。此外,也發現AKT也參與學習記憶的過程中,在學習過程中主要扮演負調控的角色。

    Aging is considered as an irreversible process resulting in physiological degeneration and dysfunction. It is also the major risking factor of neuron degenerative diseases, such as Alzheimer’s disease (AD). As the cost of social and economic expense on the care of senior people and patient of AD is increased worldwide, there is a growing need to understand and prevent aging process and medicine to treat related impairment. However, the detailed molecular mechanism involved in aging process still remained elusive.
    Using Drosophila melanogaster as a model system, we revealed that there is increase of AKT activity in the aging animals. Overexpressed AKT in the brain reduces life-span and jeopardizes the learning ability. Reduced AKT level in the neurons reversed aging-induced learning deficit and prolonged the survival rate in the starvation stress condition. Pharmacological application to inhibit AKT activity improved not only life-span shortening but also learning ability injured in the AD animal. Our data further suggested FOXO is the major downstream protein of AKT signaling to improve the life-span and reverse the learning deficit in the AD animal.
    The classic neuropathological signs of Alzheimer’s disease are amyloid plaques. β-amyloid42 (Aβ42) is produced by the sequential action of β and γ-secretases on amyloid beta-protein precursor (APP) . Here, we found AKT activity is correlated with γ-secretases activity. It indicates that AKT plays an critical in AD progress.
    Moreover, the previous studies showed that cAMP is major a signal regulator in associative learning process. Our result demonstrated that AKT is activated during learning. Reduced AKT on MB can reverse learning deficit by disruption level of cAMP; increase cAMP level can reverse AKT induced-learning deficit. This study explored AKT is a negative regulator in learning process.
    Altogether, our data demonstrate that AKT plays a crucial role in mediating aging-related impairments and AD pathogenesis, which suggest that there is a common molecular mechanism involved in aging process and AD. Moreover, we also discovered AKT is involved in learning process and inhibition of learning ability. It indicated that AKT is as a native regulator in learning process.

    中文摘要 I Abstract IV Abbreviations VIII Content X Introduction...1 1.2 Longevity regulated by insulin pathway...2 1.3 AKT pathway in neuron system...4 1.4 Pathology of Alzheimer’s disease...5 1.5 The role of AKT in Alzheimer’s disease...6 1.6 Drosophila model...7 1.7 Learning and memory formation...8 1.8 Molecular in learning and memory...10 1.9 specific aim...12 Method...13 2.1 Life span Assays...14 2.2 Estimation of stress resistance...14 2.3 Climbing assay...14 2.4 Western Blot Analysis...14 2.5 Learning behavioral analyses...15 2.6 Drug feeding...16 2.7 Confocal Microscopy and Immunofluorescence. 16 2.8 Statistics...16 Result...18 3.1 AKT protein active level is correlated with aging in brain 19 3.2 Neuronal AKT activation reduces life span...19 3.3 Neuronal overexpression of epidermal growth factor receptor reduces life span...19 3.3 Reduced AKT in neuron improves age-related pathology...20 3.5 AKT can reverse cognitive decline and neuron loss in aging animal...21 3.6 Reduced AKT recover Aβ toxicity inducing early death and learning deficit...22 3.7 FOXO, the downstream protein of AKT can reduce Aβ42 toxicity...23 3.8 AKT is involved in Aβ production via regulation of γ-secretase activity...24 3.9 Aging is correlated with γ-secretase activity...25 3.10 Neuronal rut expression can reverse AKT-induced premature death and leaning deficit....25 3.11 Reduction of AKT can reverse rut mutant caused damage 27 3.12 Reduction of AKT on MB restored learning impairment in rut mutant...28 3.13 Reduction of AKT reverse learning deficit in dnc mutant 28 3.14 AKT is activated during learning and memory formation 29 Discussion and Conclusion...30 4.1 Reduced AKT in neuron reverses age-related pathology 31 4.2 Over expression EGFR on neuron accelerates aging process 31 4.3 AKT is involved in Aβ processing via regulation of γ-secretase activity...32 4.5 AKT is involved in cAMP pathway during learning and memory formation...34 4.6 AKT is activated during learning and memory formation 35 Reference...37 Figure...46

    Reference

    Acin-Perez, R., Salazar, E., Kamenetsky, M., Buck, J., Levin, L. R., Manfredi, G. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell metabolism, 9(3), 265-276. (2009).

    Apfeld, J., Kenyon, C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature, 402(6763), 804-809. (1999).

    Bartke, A. Insulin and aging. Cell Cycle, 7(21), 3338-3343. (2008).

    Bayer, T. A., Cappai R Fau - Masters, C. L., Masters Cl Fau - Beyreuther, K.,
    Beyreuther K Fau - Multhaup, G. It all sticks together--the APP-related family of proteins and Alzheimer's disease. Molecular Psychiatry, 4(6), 524-8. (1999).

    Beck, C. D. O., Schroeder, B., and Davis, R. L. Learning Performance of Normal and MutantDrosophila after Repeated Conditioning Trials with Discrete Stimuli. Journal of Neuroscience, 20(8), 2944-2953. (2000).

    Bekinschtein, P., Katche, C., Slipczuk, L. N., Igaz, L. M., Cammarota, M., Izquierdo, I., & Medina, J. H. mTOR signaling in the hippocampus is necessary for memory formation. Neurobiology of Learning and Memory, 87(2), 303-307. (2007).

    Bluher, M., Kahn, B. B., and Kahn, C. R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science, 299(5606), 572-574. (2003).

    Brand, A. H., and Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118(2), 401. (1993).

    Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., and Hafen, E. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Current Biology, 11(4), 213-221. (2001).
    Broughton, S. J., Piper, M. D., Ikeya, T., Bass, T. M., Jacobson, J., Driege, Y, Partridge, L. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A, 102(8), 3105-3110. (2005).

    Busto, G. U., Cervantes-Sandoval, I., and Davis, R. L. Olfactory learning in Drosophila. Physiology (Bethesda), 25(6), 338-346. (2010).

    Butler, J. A., Mishur, R. J., Bhaskaran, S., and Rea, S. L. A metabolic signature for long life in the Caenorhabditis elegans Mit mutants. Aging cell, 12(1), 130-138. (2013).

    Catherine A, W., D, K., Kimura, Ming-Sum , L., and Ruvkun, G. Regulation of C. elegans Life-Span by Insulinlike Signaling in the Nervous System. Science, 290(147-150), 147. (2000).

    Chow, V. W., Mattson, M. P., Wong, P. C., and Gleichmann, M. An overview of APP processing enzymes and products. Neuromolecular Med, 12(1), 1-12. (2010).

    Clancy, D. J., Gems, D., Harshman, L. G., Oldham, S., Stocker, H., Hafen, E. Partridge, L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science, 292(5514), 104-106. (2001).

    Cohen, E., Bieschke, Rhonda M, Jeffery W, K., and Dillin, A. Opposing Activities Protect Against Age-Onset Proteotoxicity. Science, 313, 1603-1610. (2006).

    Ehud Cohen, Johan F. Paulsson, Pablo Blinder, Tal Burstyn-Cohen, Deguo Du, Gabriela Estepa, Anthony Adame, Hang M. Pham., et al. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell, 139(6), 1157-1169. (2009).

    David J, C., David Gems, Lawrence.G, Harshman, Sean Oldham, Hugo Stocker, Ernst Hafen, Sally J.Leevers, Linda Partridge. Extension of Life-Span by Loss of CHICO, a Drosophila Insulin Receptor Substrate Protein. Science, 229, 104-106. (2001).

    Davis, R. L. Mushroom bodies and Drosophila learning. Neuron, 11(1), 1-14. (1993).

    Davis, R. L., Cherry, J., Dauwalder, B., Han, P. L., and Skoulakis, E. The cyclic AMP system and Drosophila learning. Mol Cell Biochem, 149-150. (1995).

    Davis, R. L., and Kiger, J. A. Dunce mutants of Drosophila melanogaster: mutants defective in the cyclic AMP phosphodiesterase enzyme system. The Journal of Cell Biology, 90(1), 101. (1981).

    Drain, P., Folkers, E., and Quinn, W. G. cAMP-dependent protein kinase and the disruption of learning in transgenic flies. Neuron, 6(1), 71-82. (1991).

    Dudai, Y. Some Properties of Adenylate-Cyclase Which Might Be Important for Memory Formation. Febs Letters, 191(2), 165-170. (1985).

    Dudai Y Fau - Jan, Y. N., Jan Yn Fau - Byers, D., Byers D Fau - Quinn, W. G., Quinn Wg Fau - Benzer, S., and Benzer, S. Dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci U S A, 73(5): 1684–1688. (1976).

    Enriquez-Barreto, L., and Morales, M. The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia. Molecular and Cellular Therapies, 4(1), 2. (2016).

    Grönke, S., Clarke, D.-F., Broughton, S., Andrews, T. D., and Partridge, L. Molecular Evolution and Functional Characterization of Drosophila Insulin-Like Peptides. PLOS Genetics, 6(2). (2010).

    Greeve, I., Kretzschmar, D., Tschape, J. A., Beyn, A., Brellinger, C., Schweizer, M., et al. Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. Journal of Neuroscience, 24(16), 3899-3906. (2004).

    Griffin, R. J., Moloney, A., Kelliher, M., Johnston, J. A., Ravid, R., Dockery, P. O'Neill, C. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. Journal of Neurochemistry, 93(1), 105-117. (2005).

    He, Y.,and Jasper, H. Studying aging in Drosophila. Methods, 68(1), 129-133. (2014).

    Heisenberg, M. What Do the Mushroom Bodies Do for the Insect Brain? An Introduction. Learning and Memory, 5(1), 1-10. (1998).

    Hemmings, B. A., and Restuccia, D. F. PI3K-PKB/Akt Pathway. Cold Spring Harbor Perspectives in Biology, 4(9). (2012).

    Horwood, J. M., Dufour, F., Laroche, S., and Davis, S. Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. European Journal Neuroscience, 23(12), 3375-3384. (2006).

    Hu, Y., Ye, Y., and Fortini, M. E. Nicastrin Is Required for γ-Secretase Cleavage of the Drosophila Notch Receptor. Developmental Cell, 2(1), 69-78. (2002).

    Jin, K. Modern Biological Theories of Aging. Aging and Disease, 1, 72-74. (2010).

    Jones, M. A., and Grotewiel, M. Drosophila as a Model for Age-Related Impairment in Locomotor and other Behaviors. Experimental Gerontology, 46(5), 320-325. (2011).

    Kannan, K., and Fridell, Y.-W. C. Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction. Frontiers in Physiology, 4, 288. (2013).

    Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature, 366(6454), 461-464.

    Kenyon, C. J. (2010). The genetics of ageing. Nature, 464(7288), 504-512. (1993).

    Kim, S., Jee, K., Kim, D., Koh, H., and Chung, J. Cyclic AMP inhibits Akt activity by blocking the membrane localization of PDK1. Journal of Biological Chemistry, 276(16), 12864-12870. (2001).

    Kui Lin, H. H., Natasha Libina, Cynthia Kenyon. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. nature genetics, 28, 139-145. (2001).

    Leadsham, J. E., and Gourlay, C. W. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biology, 11, 92-92. (2010).

    Lee, D. Global and local missions of cAMP signaling in neural plasticity, learning, and memory. Front Pharmacol, 6, 161. (2015).

    Levin, L. R., Han, P. L., Hwang, P. M., Feinstein, P. G., Davis, R. L., and Reed, R. R. The Drosophila learning and memory gene rutabaga encodes a Ca [2+]/Calmodulin-responsive adenylyl cyclase. Cell, 68, 479-489. (1992).

    Mair, W., Goymer, P., Pletcher and Partridge, L. Demography of dietary restriction and death in Drosophila. Science, 301(5640), 1731-1733. (2003).

    Marc Tatar, A. B., Adam Antebi. The Endocrine Regulation of Aging by Insulin-like Signals. Science, 299(5611), 1346-1351. (2003).

    Matteo Tosato, V. Z., Alessandro Ferrini,Matteo Cesari. The aging process and potential interventions to extend life expectancy. Clinical Interventions in Aging, 2(3), 401-412. (2007).

    Matthias Blu¨her, B. B. K., C. Ronald Kahn. Extended Longevity in Mice Lacking the Insulin Receptor in Adipose Tissue. Science, 299(2003), 572-574. (2003).

    McGuire, S. E., Mao, Z., and Davis, R. L. Spatiotemporal Gene Expression Targeting with the TARGET and Gene-Switch Systems in Drosophila Science,039, 2004(220).

    Stempfle et al., Denise S.,Ritu K.,Alexander L.,Mark E., Fortini and Gunter M. In vivo reconstitution of gamma-secretase in Drosophila results in substrate specificity. Molecular and Cellular Biology. 30(13). (2010).

    Moloney, A., Sattelle, D. B., Lomas, D and Crowther, D. Alzheimer's disease: insights from Drosophila melanogaster models. Trends in Biochemical Sciences, 35(4), 228-235. (2010).

    Naganos, S., Ueno, K., Horiuchi, J., and Saitoe, M. Learning defects in Drosophila growth restricted chico mutants are caused by attenuated adenylyl cyclase activity. Molecular Brain, 9, 37. (2016).

    Neill, C., Kiely, Aoife P., Coakley, Meghan F., Manning, S., and Long-Smith, Caitriona M. Insulin and IGF-1 signalling: longevity, protein homoeostasis and Alzheimer's disease. Biochemical Society Transactions, 40(4), 721. (2012).

    O' Neill, C. PI3-kinase/Akt/mTOR signaling: Impaired on/off switches in aging, cognitive decline and Alzheimer's disease. Experimental Gerontology, 48(7), 647-653. (2013).

    O’Brien, R. J., and Wong, P. C. Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annual review of neuroscience, 34, 185-204. (2011).

    Opazo, P., Watabe, A. M., Grant, S. G. N., and O'Dell, T. J. Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. Journal of Neuroscience, 23(9), 3679-3688. (2003).

    Sang, T.-K., and George R, J. Drosophila Models of Neurodegenerative Disease. The Journal of the American Society for Experimental NeuroTherapeutics, 2, 438-446. (2005).

    Shuai, Y., Lu, B., Hu, Y., Wang, L., Sun, K., and Zhong, Y. Forgetting Is Regulated through Rac Activity in Drosophila. Cell, 140(4), 579-589. (2010).

    Tanabe, K., Itoh, M., and Tonoki, A. Age-Related Changes in Insulin-like Signaling Lead to Intermediate-Term Memory Impairment in Drosophila. Cell Reports, 18(7), 1598-1605. (2017).

    Tanzi, R. E., and Bertram, L. New frontiers in Alzheimer's disease genetics. Neuron, 32(2), 181-184. (2001).

    Taylor, S. S., Buechler, J. A., and Yonemoto, W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes.
    Annual Review of Biochemistry, 59, 971-1005. (1990).

    Teich, Andrew F., and Arancio, O. Is the Amyloid Hypothesis of Alzheimer's disease therapeutically relevant? Biochemical Journal, 446(2), 165. (2012).

    Tong, J. J., Schriner, S. E., McCleary, D., Day, B. J., and Wallace, D. C. Life extension through neurofibromin mitochondrial regulation and antioxidant therapy for neurofibromatosis-1 in Drosophila melanogaster. Nature Genetics, 39(4), 476-485. (2007).

    Walter, J., Kaether, C., Steiner, H., and Haass, C. The cell biology of Alzheimer's disease: uncovering the secrets of secretases. Current Opinion in Neurobiology, 11(5), 585-590. (2001).

    Wang, Z., Zhang, L., Liang, Y., Zhang, C., Xu, Z., Zhang et al. Cyclic AMP Mimics the Anti-ageing Effects of Calorie Restriction by Up-Regulating Sirtuin. Scientific Reports, 5, 12012. (2015)

    Willcox, B. J., Donlon, T. A., He, Q., Chen, R., Grove, J. S., Yano, K., et al. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A, 105(37), 13987-13992. (2008).

    Yamada, M., Ikeuchi T Fau - Hatanaka, H., and Hatanaka, H. The neurotrophic action and signalling of epidermal growth factor. Progress in Neurobiology, 51, 19-37. (1997).

    下載圖示 校內:2022-07-28公開
    校外:2022-07-28公開
    QR CODE