簡易檢索 / 詳目顯示

研究生: 陳家如
Chen, Chia-ru
論文名稱: α2,3-Sialyltransferase III和α1,3-Fucosyltransferase III、V、VI、VII基因參與幽門桿菌誘發胃表現sialyl-Lewis x抗原的機制
α2,3-Sialyltransferase III and α1,3-Fucosyltransferase III, V, VI, and VII Genes Are Involved in the Gastric Expression of Sialyl-Lewis x Induced by Helicobacter pylori
指導教授: 呂政展
Lu, Cheng-chan
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 76
中文關鍵詞: 幽門桿菌
外文關鍵詞: sLex, helicobacter pylori, sialyltransferase, fucosyltransferase
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Lewis b 抗原 (Leb) 是一種存在於胃上皮細胞的表面抗原,它和幽門桿菌黏附因子blood group antigen-binding adhesin (BabA) 的結合有利於幽門桿菌貼附在胃粘膜上面。近年來,人們發現sialyl-Lewis x 抗原 (sLex)會表現在被幽門桿菌感染所引起的慢性發炎的胃上皮組織,而且此抗原可以作為幽門桿菌的sialic acid- binding adhesin (SabA)黏附因子的接受器。此外在那些不會表現Leb抗原的病人胃部裡,sLex抗原和幽門桿菌SabA黏附因子的結合會增加細菌在胃裡的菌落數目。sLex抗原是屬於Lewis histo-blood group antigen家族的一員,而且它的合成必須要經由2,3- sialyltransferases (ST3Gal) 和 1,3-fucosyltransferases (FUT)這兩種酵素催化才能完成。本篇研究的目的在於了解幽門桿菌能否誘發胃上皮組織表現sLex抗原以及幽門桿菌是透過什麼機制去影響胃上皮組織表現sLex抗原。為了要研究幽門桿菌感染如何去誘發胃上皮組織表現sLex抗原,我們建立了一個細胞模式來觀察。首先我們把人類胃上皮細胞株MKN45細胞和幽門桿菌一起培養,發現在幽門桿菌的刺激之下並不會誘使MKN45細胞的細胞膜表面表現sLex抗原,但在幽門桿菌感染細胞的培養過濾液刺激之下則會使MKN45細胞在48小時內持續增加sLex抗原的表現量。而且我們比較幽門桿菌感染細胞的培養過濾液和幽門桿菌的培養過濾液兩者誘導MKN45細胞表現sLex抗原的能力,後者誘導MKN45細胞表現sLex抗原量比前者少了17%。因此我們推測在幽門桿菌感染細胞的培養過濾液中除了細菌分泌出來的成分之外,細胞在感染時所釋放出的因子也會參與在調控sLex抗原表現的機制,不過細菌的分泌物在調控sLex抗原表現的部份是扮演比較重要的角色。另外我們的實驗結果也顯示出MKN45細胞在重組的人類TNF-或IL-8刺激之下並不會增加sLex抗原的表現量,可是一些幽門桿菌的致病因子,例如CagA、VacA、BabA可能會參與調控sLex抗原的表現,因為我們發現不論是CagA或VacA或BabA突變株誘導細胞表現sLex抗原的能力都比野生株差。此外在RT-PCR和real-time RT-PCR的分析結果顯示出在幽門桿菌培養過濾液的作用之下會增加細胞內 ST3Gal III和 FUT III、V、VI、VII mRNA表現量。我們的ST3Gal III 的promoter報導基因(reporter gene)分析結果指出在轉錄起始點(transcriptional start site)上游-123到-90 bp的這段區域可能具有正向調控的功能,而 FUT III promoter報導基因的分析結果也指出正向調控的區域可能座落在基因的-149到+32 bp的區域或者更下游的位置。總而言之,在本篇論文中我們發現幽門桿菌可以誘發胃上皮細胞表現sLex抗原,而且ST3Gal III和FUT III、V、VI、VII這五種基因與調控sLex抗原表現的機制有很大的關聯性。

    Lewis b antigen (Leb) is a surface structure expressed on the gastric epithelium and interacts with blood group antigen-binding adhesin (BabA) of H. pylori, thus contributing to H. pylori adherence. Recently, sialyl-Lewis x antigen (sLex) has been found to be expressed on gastric epithelium during chronic inflammation induced by H. pylori and serves as a receptor for sialic acid-binding adhesin (SabA) of H. pylori. In patients who express no gastric Lewis b or weak Leb, the interaction between sLex and SabA increases the H. pylori colonization density. sLex is a member of Lewis histo-blood group antigen family and its biosynthesis is regulated by 2,3-sialyltransferases (ST3Gal) and 1,3-fucosyltransferases (FUT). Our aims of this study were to investigate whether and how H. pylori can trigger the sLex expression on gastric epithelium. In order to address these issues, we established a cell line model. We found that human gastric epithelial cell line MKN45 cells cocultured with H. pylori directly did not have detectable sLex antigen expression on cell surface. However, cells treated with H. pylori-infected cell filtrates or
    H. pylori culture filtrates continued to increase sLex expression up to 48 h. By comparing the percentages of increased expression of sLex, we observed that cells treated with H. pylori culture filtrates consistently has 17% lower expression of sLex as compared to those treated with H. pylori-infected cell filtrates. These observations suggest that besides bacterial components secreted in the culture filtrates, factors released by cells in response to H. pylori infection are also involved in the up-regulation of sLex expression, although the former plays a predominant role. In this cell line model, sLex expression could not be induced to express on gastric epithelial cell line by recombinant human TNF- or IL-8 or their combination.
    In contrast, certain virulence factors, such as CagA, VacA and BabA, they all participate in the up-regulation of sLex expression. This was shown by the fact that CagA, VacA, or BabA isogenic mutants all have reduced ability to induce sLex expression when compared to wild type. RT-PCR and real-time RT-PCR analysis indicated that enhanced expression of ST3Gal III and FUT III, V, VI and VII mRNA were observed in cells with increased sLex expression due to treatment with culture filtrates. ST3Gal III promoter reporter gene analysis indicated that -123 to -90 bp upstream of transcriptional start site may harbor positive regulatory elements involved in the up-regulation of sLex expression. FUT III promoter reporter gene analysis indicated that positive regulatory elements may be located within -149 to +32 bp region of FUT III gene or further downstream. In summary,
    H. pylori can induce sLex expression on gastric epithelial cells and the ST3Gal III as well as FUT III, V, VI and VII genes are associated with the up-regulation of sLex
    expression.

    Abstract (Chinese) …………………………………………… I Abstract (English) …………………………………………… III Acknowledgement ……………………………………………… V Contents ………………………………………………………… VII Index of Tables and Figures ……………………………… X Introduction …………………………………………………… 1 Materials and Methods ……………………………………… 7 Cell culture …………………………………………………… 8 Bacterial strains and infection ……………………………8 H. pylori filtrate preparations ……………………………9 Total cell lysates and membrane fractions preparation ………………………………………………………………………9 Immunoblot ……………………………………………………… 10 Flow cytometry ………………………………………………… 11 Sialidase treatment ……………………………………………11 Enzyme-linked immunosorbent assay …………………………12 Cytokine treatment …………………………………………… 12 RNA preparation and RT-PCR for glycosyltransferases …………………………………………………………………… 12 Real-time PCR ………………………………………………… 13 Construction of ST3 Gal III promoter 5’ deletion mutants …………………………………………………………………… 13 Construction of FUT III promoter 5’ deletion mutants …………………………………………………………………… 14 Lipofectamine transfection …………………………………………………………………… 15 Statistical analysis ………………………………………… 15 Results ………………………………………………………… 16 Part I …………………………………………………………… 17 Establishment of culture system by which sLex expression can be induced by H. pylori infection ………………… 17 Direct coculture of H. pylori with gastric epithelial cells did not induce detectable sLex expression …… 18 SLex expression was increased on the gastric epithelial cells treated with H. pylori-infected cell filtrates 18 Sialidase treatment reduced the sLex expression on the gastric epithelial cells …………………………………… 19 Part II ………………………………………………………… 20 To identify factors in the H. pylori-infected cell filtrates responsible for the induction of the sLex expression ……………………………………………………… 20 H. pylori stimulated TNF-a and IL-8 release from gastric epithelial cells …………………………………… 21 TNF-a or IL-8 did not induce the sLex expression on the gastric epithelial cells …………………………………… 21 The sLex expression was increased on the gastric epithelial cells treated with H. pylori culture filtrates …………………………………………………………………… 22 H. pylori virulence factors CagA, VacA, and BabA were involved in the regulation of sLex antigen expression, whereas HopZ and FlgK were not …………………………… 23 Part III ………………………………………………………… 24 H. pylori culture filtrates induce 2,3-sialyltransferases and 1,3-fucosyl-transferases mRNA expression ……………………………………………………… 24 ST3Gal III mRNA expression was up-regulated by H. pylori culture filtrates in the gastric epithelial cells …………………………………………………………………… 25 FUT III, V, VI and VII mRNA expression were up-regulated in the gastric epithelial cells treated with H. pylori culturefiltrates …………………………………… 25 Luciferase reporter activity of ST3Gal III promoter was increased in cells treated with H. pylori culture filtrates ……………………………………………………… 26 Screening the FUT III promoter region in up-regulation of sLex in cells treated with H. pylori culture filtrates …………………………………………………………………… 27 Discussion ……………………………………………………… 29 References …………………………………………………………………… 36 Tables and Figures …………………………………………………………………… 43 Appendixes …………………………………………………………………… 70

    Andrutis, K.A., Fox, J.G., Schauer, D.B., Marini, R.P., Li, X., Yan, L., Josenhans, C., and Suerbaum, S. (1997). Infection of the ferret stomach by isogenic flagellar mutant
    strains of Helicobacter mustelae. Infect Immun 65, 1962-1966.
    Berg, E.L., Robinson, M.K., Mansson, O., Butcher, E.C., and Magnani, J.L. (1991). A carbohydrate domain common to both sialyl Le(a) and sialyl Le(X) is recognized by the
    endothelial cell leukocyte adhesion molecule ELAM-1. J Biol Chem 266, 14869-14872.
    Censini, S., Lange, C., Xiang, Z., Crabtree, J.E., Ghiara, P., Borodovsky, M., Rappuoli, R., and Covacci, A. (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA
    93, 14648-14653.
    Cheung, T.K., Xia, H.H., and Wong, B.C. (2007). Helicobacter pylori eradication for
    gastric cancer prevention. J Gastroenterol 42 Suppl 17, 10-15.
    Chou, C.Y., Shen, M.R., Hsu, K.S., Huang, H.Y., and Lin, H.C. (1998). Involvement of PKC-alpha in regulatory volume decrease responses and activation of volume-sensitive
    chloride channels in human cervical cancer HT-3 cells. J Physiol 512 ( Pt 2), 435-448.
    Cover, T.L., and Blanke, S.R. (2005). Helicobacter pylori VacA, a paradigm for toxin
    multifunctionality. Nat Rev Microbiol 3, 320-332.
    Cover, T.L., and Blaser, M.J. (1992). Purification and characterization of the vacuolating
    toxin from Helicobacter pylori. J Biol Chem 267, 10570-10575.
    Crabtree, J.E., Shallcross, T.M., Heatley, R.V., and Wyatt, J.I. (1991). Mucosal tumour necrosis factor alpha and interleukin-6 in patients with Helicobacter pylori
    associated gastritis. Gut 32, 1473-1477.
    Crabtree, J.E., Wyatt, J.I., Trejdosiewicz, L.K., Peichl, P., Nichols, P.H., Ramsay, N., Primrose, J.N., and Lindley, I.J. (1994). Interleukin-8 expression in Helicobacter pylori
    infected, normal, and neoplastic gastroduodenal mucosa. J Clin Pathol 47, 61-66.
    Crabtree, J.E., Xiang, Z., Lindley, I.J., Tompkins, D.S., Rappuoli, R., and Covacci, A. (1995). Induction of interleukin-8 secretion from gastric epithelial cells by a cagA negative
    isogenic mutant of Helicobacter pylori. J Clin Pathol 48, 967-969.
    Dabrowska, A., Baczynska, D., Widerak, K., Laskowska, A., and Ugorski, M. (2005). Promoter analysis of the human alpha1,3/4-fucosyltransferase gene (FUT III). Biochim
    Biophys Acta 1731, 66-73.
    de Vries, T., Knegtel, R.M., Holmes, E.H., and Macher, B.A. (2001).
    Fucosyltransferases: structure/function studies. Glycobiology 11, 119R-128R.
    Delmotte, P., Degroote, S., Merten, M.D., Van Seuningen, I., Bernigaud, A., Figarella, C., Roussel, P., and Perini, J.M. (2001). Influence of TNFalpha on the sialylation of mucins produced by a transformed cell line MM-39 derived from human tracheal gland
    cells. Glycoconj J 18, 487-497.
    Eck, M., Schmausser, B., Scheller, K., Brandlein, S., and Muller-Hermelink, H.K. (2003). Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma.
    Clin Exp Immunol 134, 508-515.
    Furuta, S., Goto, H., Niwa, Y., Ohmiya, N., Kamiya, K., Oguri, A., Hayakawa, T., and Mori, N. (2002). Interferon-gamma regulates apoptosis by releasing soluble tumor necrosis factor receptors in a gastric epithelial cell line. J Gastroenterol Hepatol 17,
    1283-1290.
    Gionchetti, P., Vaira, D., Campieri, M., Holton, J., Menegatti, M., Belluzzi, A., Bertinelli, E., Ferretti, M., Brignola, C., Miglioli, M., et al. (1994). Enhanced mucosal interleukin-6 and -8 in Helicobacter pylori-positive dyspeptic patients. Am J Gastroenterol
    89, 883-887.
    Goodwin, C.S., Armstrong, J.A., and Marshall, B.J. (1986). Campylobacter pyloridis,
    gastritis, and peptic ulceration. J Clin Pathol 39, 353-365.
    Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M.A., Samyn-Petit, B., Julien, S., and Delannoy, P. (2001). The human sialyltransferase family. Biochimie 83,
    727-737.
    Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pylori CagA
    protein. Nat Rev Cancer 4, 688-694.
    Higai, K., Miyazaki, N., Azuma, Y., and Matsumoto, K. (2006). Interleukin-1beta induces sialyl Lewis X on hepatocellular carcinoma HuH-7 cells via enhanced expression
    of ST3Gal IV and FUT VI gene. FEBS Lett 580, 6069-6075.
    Higashi, H., Nakaya, A., Tsutsumi, R., Yokoyama, K., Fujii, Y., Ishikawa, S., Higuchi, M., Takahashi, A., Kurashima, Y., Teishikata, Y., et al. (2004). Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and
    activation. J Biol Chem 279, 17205-17216.
    Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., and Hatakeyama, M. (2002). SHP-2 tyrosine phosphatase as an intracellular target of
    Helicobacter pylori CagA protein. Science 295, 683-686.
    Hu, L.T., and Mobley, H.L. (1990). Purification and N-terminal analysis of urease from
    Helicobacter pylori. Infect Immun 58, 992-998.
    Huang, T.J., Lu, C.C., Tsai, J.C., Yao, W.J., Lu, X., Lai, M.D., Liu, H.S., and Shiau, A.L. (2005). Novel autoregulatory function of hepatitis B virus M protein on surface gene
    expression. J Biol Chem 280, 27742-27754.
    Ibraghimov, A., and Pappo, J. (2000). The immune response against Helicobacter pylori--a direct linkage to the development of gastroduodenal disease. Microbes Infect 2,
    1073-1077.
    Ilver, D., Arnqvist, A., Ogren, J., Frick, I.M., Kersulyte, D., Incecik, E.T., Berg, D.E., Covacci, A., Engstrand, L., and Boren, T. (1998). Helicobacter pylori adhesin binding
    fucosylated histo-blood group antigens revealed by retagging. Science 279, 373-377.
    Isaacson, P.G., and Du, M.Q. (2004). MALT lymphoma: from morphology to molecules.
    Nat Rev Cancer 4, 644-653.
    Ishibashi, Y., Imai, S., Inouye, Y., Okano, T., and Taniguchi, A. (2006). Effects of carbocisteine on sialyl-Lewis x expression in an airway carcinoma cell line stimulated with
    tumor necrosis factor-alpha. Eur J Pharmacol 530, 223-228.
    Ishibashi, Y., Inouye, Y., Okano, T., and Taniguchi, A. (2005). Regulation of sialyl-Lewis x epitope expression by TNF-alpha and EGF in an airway carcinoma cell line.
    Glycoconj J 22, 53-62.
    Israel, D.A., and Peek, R.M. (2001). Pathogenesis of Helicobacter pylori-induced gastric
    inflammation. Aliment Pharmacol Ther 15, 1271-1290.
    Kang, N.Y., Park, Y.D., Choi, H.J., Kim, K.S., Lee, Y.C., and Kim, C.H. (2004).
    Regulatory elements involved in transcription of the human NeuAcalpha2,3Galbeta1,3-
    GalNAcalpha2,6-sialyltransferase (hST6GalNAc IV) gene. Mol Cells 18, 157-162.
    Kannagi, R. (1997). Carbohydrate-mediated cell adhesion involved in hematogenous
    metastasis of cancer. Glycoconj J 14, 577-584.
    Kannagi, R., Izawa, M., Koike, T., Miyazaki, K., and Kimura, N. (2004). Carbohydrate -mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci 95, 377-384.
    Kostrzynska, M., Betts, J.D., Austin, J.W., and Trust, T.J. (1991). Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori
    flagella. J Bacteriol 173, 937-946.
    Koszdin, K.L., and Bowen, B.R. (1992). The cloning and expression of a human alpha-1,3 fucosyltransferase capable of forming the E-selectin ligand. Biochem Biophys
    Res Commun 187, 152-157.
    Labigne, A., Cussac, V., and Courcoux, P. (1991). Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J Bacteriol 173,
    1920-1931.
    Le Pendu, J., Marionneau, S., Cailleau-Thomas, A., Rocher, J., Le Moullac-Vaidye, B., and Clement, M. (2001). ABH and Lewis histo-blood group antigens in cancer. Apmis
    109, 9-31.
    Li, R., Villacreses, N., and Ladisch, S. (1995). Human tumor gangliosides inhibit murine
    immune responses in vivo. Cancer Res 55, 211-214.
    Lin, C.C. (2006). Role of sialic acid-binding adhesin (SabA) in Helicobacter pylori adhesion. In Institute of Molecular Medicine (Tainan, Taiwan, National Cheng Kung
    University).
    Lin, C.W., Chang, Y.S., Wu, S.C., and Cheng, K.S. (1998). Helicobacter pylori in gastric biopsies of Taiwanese patients with gastroduodenal diseases. Jpn J Med Sci Biol
    51, 13-23.
    Lin, J.T., Wang, L.Y., Wang, J.T., Wang, T.H., and Chen, C.J. (1995). Ecological study of association between Helicobacter pylori infection and gastric cancer in Taiwan.
    Dig Dis Sci 40, 385-388.
    Ma, B., Simala-Grant, J.L., and Taylor, D.E. (2006). Fucosylation in prokaryotes and
    eukaryotes. Glycobiology 16, 158R-184R.
    Magnani, J.L. (2004). The discovery, biology, and drug development of sialyl Lea and
    sialyl Lex. Arch Biochem Biophys 426, 122-131.
    Mahdavi, J., Sonden, B., Hurtig, M., Olfat, F.O., Forsberg, L., Roche, N., Angstrom, J., Larsson, T., Teneberg, S., Karlsson, K.A., et al. (2002). Helicobacter pylori SabA
    adhesin in persistent infection and chronic inflammation. Science 297, 573-578.
    Mai, U.E., Perez-Perez, G.I., Allen, J.B., Wahl, S.M., Blaser, M.J., and Smith, P.D. (1992). Surface proteins from Helicobacter pylori exhibit chemotactic activity for human
    leukocytes and are present in gastric mucosa. J Exp Med 175, 517-525.
    Marionneau, S., Cailleau-Thomas, A., Rocher, J., Le Moullac-Vaidye, B., Ruvoen, N., Clement, M., and Le Pendu, J. (2001). ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world.
    Biochimie 83, 565-573.
    Marshall, B.J., and Warren, J.R. (1984). Unidentified curved bacilli in the stomach of
    patients with gastritis and peptic ulceration. Lancet 1, 1311-1315.
    Murray, C.J., and Lopez, A.D. (1997). Mortality by cause for eight regions of the world:
    Global Burden of Disease Study. Lancet 349, 1269-1276.
    Nagata, K., Tsuji, T., Hanai, N., and Irimura, T. (1994). Role of O-linked carbohydrate chains on leukocyte cell membranes in platelet-induced leukocyte activation. J Biol Chem
    269, 23290-23295.
    Naumann, M. (2005). Pathogenicity island-dependent effects of Helicobacter pylori on
    intracellular signal transduction in epithelial cells. Int J Med Microbiol 295, 335-341.
    Nishihara, S., Iwasaki, H., Kaneko, M., Tawada, A., Ito, M., and Narimatsu, H. (1999). Alpha1,3-fucosyltransferase 9 (FUT9; Fuc-TIX) preferentially fucosylates the distal GlcNAc residue of polylactosamine chain while the other four alpha1,3FUT
    members preferentially fucosylate the inner GlcNAc residue. FEBS Lett 462, 289-294.
    Noach, L.A., Bosma, N.B., Jansen, J., Hoek, F.J., van Deventer, S.J., and Tytgat, G.N. (1994). Mucosal tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8 production in patients with Helicobacter pylori infection. Scand J Gastroenterol 29,
    425-429.
    Odenbreit, S. (2005). Adherence properties of Helicobacter pylori: impact on
    pathogenesis and adaptation to the host. Int J Med Microbiol 295, 317-324.
    Odenbreit, S., Faller, G., and Haas, R. (2002). Role of the alpAB proteins and lipopolysaccharide in adhesion of Helicobacter pylori to human gastric tissue. Int J Med
    Microbiol 292, 247-256.
    Odenbreit, S., Till, M., Hofreuter, D., Faller, G., and Haas, R. (1999). Genetic and functional characterization of the alpAB gene locus essential for the adhesion of
    Helicobacter pylori to human gastric tissue. Mol Microbiol 31, 1537-1548.
    Parsonnet, J., Friedman, G.D., Orentreich, N., and Vogelman, H. (1997). Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori
    infection. Gut 40, 297-301.
    Peck, B., Ortkamp, M., Diehl, K.D., Hundt, E., and Knapp, B. (1999). Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori.
    Nucleic Acids Res 27, 3325-3333.
    Peek, R.M., Jr., and Blaser, M.J. (2002). Helicobacter pylori and gastrointestinal tract
    adenocarcinomas. Nat Rev Cancer 2, 28-37.
    Peek, R.M., Jr., Miller, G.G., Tham, K.T., Perez-Perez, G.I., Zhao, X., Atherton, J.C., and Blaser, M.J. (1995). Heightened inflammatory response and cytokine expression in
    vivo to cagA+ Helicobacter pylori strains. Lab Invest 73, 760-770.
    Peracaula, R., Tabares, G., Lopez-Ferrer, A., Brossmer, R., de Bolos, C., and de Llorens, R. (2005). Role of sialyltransferases involved in the biosynthesis of Lewis
    antigens in human pancreatic tumour cells. Glycoconj J 22, 135-144.
    Peterson, W.L. (1991). Helicobacter pylori and peptic ulcer disease. N Engl J Med 324,
    1043-1048.
    Rad, R., Gerhard, M., Lang, R., Schoniger, M., Rosch, T., Schepp, W., Becker, I., Wagner, H., and Prinz, C. (2002). The Helicobacter pylori blood group antigen-binding adhesin facilitates bacterial colonization and augments a nonspecific immune response. J
    Immunol 168, 3033-3041.
    Rauvala, H. (1976). Gangliosides of human kidney. J Biol Chem 251, 7517-7520.
    Recchi, M.A., Hebbar, M., Hornez, L., Harduin-Lepers, A., Peyrat, J.P., and Delannoy, P. (1998). Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res 58,
    4066-4070.
    Sheu, B.S., Odenbreit, S., Hung, K.H., Liu, C.P., Sheu, S.M., Yang, H.B., and Wu, J.J. (2006). Interaction between host gastric Sialyl-Lewis X and H. pylori SabA enhances H.
    pylori density in patients lacking gastric Lewis B antigen. Am J Gastroenterol 101, 36-44.
    Sheu, B.S., Sheu, S.M., Yang, H.B., Huang, A.H., and Wu, J.J. (2003). Host gastric Lewis expression determines the bacterial density of Helicobacter pylori in babA2
    genopositive infection. Gut 52, 927-932.
    Sipponen, P., Kosunen, T.U., Valle, J., Riihela, M., and Seppala, K. (1992). Helicobacter pylori infection and chronic gastritis in gastric cancer. J Clin Pathol 45,
    319-323.
    Takada, A., Ohmori, K., Yoneda, T., Tsuyuoka, K., Hasegawa, A., Kiso, M., and Kannagi, R. (1993). Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res 53,
    354-361.
    Taniguchi, A., Saito, K., Kubota, T., and Matsumoto, K. (2003). Characterization of the promoter region of the human Galbeta1,3(4)GlcNAc alpha2,3-sialyltransferase III
    (hST3Gal III) gene. Biochim Biophys Acta 1626, 92-96.
    Tufano, M.A., Rossano, F., Catalanotti, P., Liguori, G., Capasso, C., Ceccarelli, M.T., and Marinelli, P. (1994). Immunobiological activities of Helicobacter pylori porins.
    Infect Immun 62, 1392-1399.
    Uemura, N., Okamoto, S., Yamamoto, S., Matsumura, N., Yamaguchi, S., Yamakido, M., Taniyama, K., Sasaki, N., and Schlemper, R.J. (2001). Helicobacter pylori infection
    and the development of gastric cancer. N Engl J Med 345, 784-789.
    White, J.S., and White, D.C. (1997). Source book of enzymes ((Boca Raton and New
    York, CRC Press).
    Wu, J.J., Sheu, B.S., Huang, A.H., Lin, S.T., and Yang, H.B. (2006). Characterization of flgK gene and FlgK protein required for H. pylori colonization--from cloning to clinical
    relevance. World J Gastroenterol 12, 3989-3993.
    Yago, K., Zenita, K., Ginya, H., Sawada, M., Ohmori, K., Okuma, M., Kannagi, R., and Lowe, J.B. (1993). Expression of alpha-(1,3)-fucosyltransferases which synthesize sialyl Le(x) and sialyl Le(a), the carbohydrate ligands for E- and P-selectins,in human
    malignant cell lines. Cancer Res 53, 5559-5565.
    Yang, Y.J., Wu, J.J., Yang, H.B., and Sheu, B.S. (2006). Helicobacter pylori-related changes of Lewis antigen expressions on gastric mucosa can be reversible by eradication
    therapy. In 6th Westerm Pacific Helicobactor Congress, pp. 86.
    Yoshida, M., Uchimura, A., Kiso, M., and Hasegawa, A. (1993). Synthesis of chemically modified sialic acid-containing sialyl-LeX ganglioside analogues recognized by
    the selectin family. Glycoconj J 10, 3-15.

    下載圖示 校內:2012-08-22公開
    校外:2012-08-22公開
    QR CODE