簡易檢索 / 詳目顯示

研究生: 劉芝函
Liou, Jhih-Han
論文名稱: 利用乳化與礦化反應製備包覆過氧化氫酶之二氧化矽/星狀聚賴胺酸複合微米水膠
Synthesis of Catalase-Encapsulated Silica/Star-Shaped Poly(L-lysine) Microgels via Emulsion and Silica Mineralization
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 聚賴胺酸星狀高分子二氧化矽複合材料催化劑包覆
外文關鍵詞: polypeptide, star polymer, silica hybrid material, enzyme encapsulation
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過氧化氫酶(catalase, CAT)在催化反應結束後有分離純化困難與重複使用率低的問題,為改善此缺點,本研究利用線性聚賴胺酸: l-PLL32與星狀聚賴胺酸:3s-PLL28、6s-PLL29來包覆過氧化氫酶,並以乳化反應與京尼平交聯反應製備成微米膠,再透過礦化作用在微米膠上沉析二氧化矽,形成包覆過氧化氫酶之二氧化矽/聚賴胺酸複合微米水膠。製備好之微米膠與包覆過氧化氫酶之二氧化矽/聚賴胺酸複合微米水膠會進行一系列結構鑑定。再進行酶之活性分析: 在包覆性上過氧化氫酶皆不會漏出;動力學分析中最大反應速率Vmax和米氏常數KM為包覆過氧化氫酶之六臂聚賴胺酸複合微米膠 (6s-PLL29/CAT)/ CTMOS=5% > 包覆過氧化氫酶之三臂聚賴胺酸複合微米膠(3s-PLL28/CAT)/ CTMOS=5% > 包覆過氧化氫酶之線性聚賴胺酸複合微米膠(l-PLL32/CAT)/ CTMOS=5%;循環穩定性分析上二氧化矽沉析量較多之複合微米水膠因過氧化氫酶被固定地較牢固,不易變形失活而有較佳的循環穩定性,此外循環穩定性分析與存放穩定性分析的結果皆顯示(6s-PLL29/CAT)/ CTMOS=5%的穩定性最佳,推測是因為6s-PLL29會形成緻密網狀結構包覆過氧化氫酶,使之不易失活的緣故;熱穩定性分析結果為各複合微米水膠之過氧化氫酶的活性隨溫度上升而下降。本研究透過礦化作用在聚賴胺酸/過氧化氫酶微米膠上沉析二氧化矽,不僅製程簡單且複合微米水膠之各方面效能表現亦佳,具有大量運用在工業上之潛力。

    The destinations of enzyme immobilization are to separate enzymes from products and raises the reuse rate. This study exhibited enzyme immobilization by emulsion, crosslinking reaction and silica mineralization. We synthesized linear and star-shaped poly(L-lysine) to encapsulate catalase and formed PLL/CAT microgels through emulsion. Then deposited silica on PLL/CAT to produce Silica/PLL/CAT hybrid materials. Linear poly(L-lysine) was l-PLL32 and star-shaped poly(L-lysine) were 3s-PLL28 and 6s-PLL29 confirmed by 1H NMR and GPC. The structure and conformation of (PLL/CAT)/Silica were checked by a series of examination. The leakage ratio analysis showed that catalase was immobilized in PLL/Silica firmly. Kinetic analysis indicated the Vmax of (6s-PLL29/CAT)/ CTMOS=5% was highest. Reusability revealed that the more silica on the (PLL/CAT)/Silica microgels, the better the reusability. Because SiO2 would reinforce the encapsulation of catalase, catalase could maintain its structure and activity well. Besides, reusability and storage stability showed the stability of (6s-PLL29/CAT)/ CTMOS=5% was the best. It could be attributed to the fact that 6s-PLL29 would form a dense structure to encapsulate catalase and consequently, it could maintain its conformation and activity. This study showed us a simple process to immobilize catalase in hybrid materials through electrostatic interaction, crosslinking reaction and mineralization, making microgels had the potential to be used in many aspects.

    摘要 I Extended Abstract II 誌謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 胺基酸 3 2.1.1 胺基酸的基本性質 3 2.1.2 蛋白質的結構 5 2.2 胺基酸之聚合 8 2.2.1 NCAs的合成 8 2.2.2 以一級胺作為起始劑進行NCAs開環聚合 9 2.2.3 以一級醇作為起始劑進行NCAs開環聚合 10 2.3 非線性高分子 13 2.3.1 樹枝狀聚合物(Dendrimer) 13 2.3.2 星狀聚合物(Star polymer) 14 2.4 奈米膠 17 2.4.1 奈米膠的介紹 17 2.4.2 奈米膠的製備方法 18 2.5 催化劑 21 2.5.1 催化劑的分類 21 2.5.2 酶的介紹 23 2.5.3 過氧化氫酶 26 2.6 化學交聯 28 2.7 二氧化矽材料 30 2.7.1 礦化作用 30 2.7.2 二氧化矽材料的形成 30 2.7.3 二氧化矽/聚胺基酸複合材料 31 第三章 實驗方法與步驟 33 3.1 實驗藥品 33 3.2 實驗儀器與原理 35 3.2.1 核磁共振光譜儀(NMR) 35 3.2.2 凝膠滲透層析儀(GPC) 36 3.2.3 掃描式電子顯微鏡(SEM) 37 3.2.4 穿透式電子顯微鏡(TEM) 38 3.2.5 動態光散射儀(DLS) 40 3.2.6 介達電位分析儀 41 3.2.7 傅立葉轉換紅外線光譜儀(FT-IR) 42 3.2.8 熱重分析儀(TGA) 45 3.2.9 紫外光/可見光光譜儀(UV/vis) 45 3.3 聚胺基酸之合成 47 3.3.1 乾燥溶劑 47 3.3.2 Z-L-lysine NCAs (ZLL NCAs)之製備 47 3.3.3 線性聚胺基酸之合成 48 3.3.4 星狀聚胺基酸(star polypeptides)之合成 49 3.3.5 去除聚胺基酸之保護基 50 3.4 微米膠與複合微米水膠之製備 51 3.4.1 微米膠的乳化製程 51 3.4.2 微米膠的實驗參數設計 52 3.4.3 微米膠包覆過氧化氫酶(Catalase,CAT) 53 3.4.4 複合微米水膠的製程 53 3.4.5 複合微米水膠的實驗參數設計 54 3.5 微米膠與複合微米水膠之性質測試參數 55 3.5.1 液態核磁共振儀(1H NMR) 55 3.5.2 凝膠滲透層析儀(GPC) 55 3.5.3 掃描式電子顯微鏡(SEM) 55 3.5.4 穿透式電子顯微鏡(TEM) 56 3.5.5 動態光散射儀(DLS) 56 3.5.6 介達電位分析儀 56 3.5.7 傅立葉轉換紅外線光譜儀(FT-IR) 57 3.5.8 熱重分析儀(TGA) 57 3.5.9 包覆過氧化氫酶之複合微米水膠之洩漏率分析 57 3.5.10 包覆過氧化氫酶之複合微米水膠之動力學分析 58 3.5.11 包覆過氧化氫酶之複合微米水膠之循環穩定性測試 58 3.5.12 包覆過氧化氫酶之複合微米水膠之熱穩定性測試 58 3.5.13 包覆過氧化氫酶之複合微米水膠之存放穩定性測試 59 第四章 結果與討論 60 4.1 聚胺基酸之合成與分析 60 4.1.1 聚賴胺酸之聚合度與分子量 ( 1H NMR ) 60 4.1.2 聚賴胺酸之聚合度與分子量 ( GPC ) 65 4.2 微米膠之分析 65 4.2.1 微米膠之形成 65 4.2.2 微米膠之粒徑和介達電位 66 4.2.3 微米膠之二級結構 69 4.3 包覆過氧化氫酶之複合微米水膠之分析 71 4.3.1 包覆過氧化氫酶之複合微米水膠之形成 71 4.3.2 包覆過氧化氫酶之複合微米水膠之二氧化矽分析 71 4.3.3 從包覆過氧化氫酶之複合微米水膠之活性分析 78 第五章 結論 88 第六章 參考文獻 90

    1. Tessari, P.; Lante, A.; Mosca, G., Essential amino acids: master regulators of nutrition and environmental footprint? Sci Rep 2016, 6, 26074.
    2. Furuya, W. M.; Michelato, M.; Salaro, A. L.; Cruz, T. P. d.; Barriviera-Furuya, V. R., Estimation of the dietary essential amino acid requirements of colliroja Astyanax fasciatus by using the ideal protein concept %J Latin american journal of aquatic research. 2015, 43, 888-894.
    3. Creighton, T. E., Proteins : structures and molecular properties. 2nd ed.; W.H. Freeman: New York, 1993; p xiii, 507 p.
    4. Meyers, R. A., Molecular biology and biotechnology : a comprehensive desk reference. VCH: New York, 1995; p xxxviii, 1034 p., 12 p. of plates.
    5. Berg, J. M.; Tymoczko, J. L.; Stryer, L.; Stryer, L., Biochemistry. 5th ed.; W.H. Freeman: New York, 2002.
    6. Lehninger, A. L.; Nelson, D. L.; Cox, M. M., Lehninger principles of biochemistry. 5th ed.; W.H. Freeman: New York, 2008.
    7. Russell, P. J., iGenetics : a molecular approach. 3rd ed.; Benjamin Cummings: San Francisco, 2010; p xix, 828 p.
    8. Brändén, C.-I.; Tooze, J., Introduction to protein structure. Garland Pub.: New York, 1991; p xv, 302 p.
    9. Petsko, G. A.; Ringe, D., Protein structure and function. New Science Press ; Sinauer Associates ; Blackwell Pub.: London Sunderland, MA Oxford, 2004; p xxii, 195 p.
    10. Schulz, G. E.; Schirmer, R. H., Principles of protein structure. Springer-Verlag: New York, 1979; p x, 314 p.
    11. Kabsch, W.; Sander, C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22 (12), 2577-637.
    12. Carlsen, A.; Lecommandoux, S., Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science 2009, 14 (5), 329-339.
    13. Deming, T. J., Polypeptide Materials: New synthetic methods and applications. Adv Mater 1997, 9 (4), 299-311.
    14. Tirrell, D. A.; Fournier, M. J.; Mason, T. L., Genetic Engineering of Polymeric Materials. MRS Bulletin 1991, 16 (7), 23-28.
    15. Krejchi, M. T.; Atkins, E. D.; Waddon, A. J.; Fournier, M. J.; Mason, T. L.; Tirrell, D. A., Chemical sequence control of beta-sheet assembly in macromolecular crystals of periodic polypeptides. Science 1994, 265 (5177), 1427.
    16. Behrendt, R.; White, P.; Offer, J., Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 2016, 22 (1), 4-27.
    17. Mitchell, A. R., Bruce Merrifield and solid-phase peptide synthesis: a historical assessment. Biopolymers 2008, 90 (3), 175-84.
    18. Coin, I.; Beyermann, M.; Bienert, M., Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2007, 2 (12), 3247-56.
    19. Fischer, P. M.; Zheleva, D. I., Liquid-phase peptide synthesis on polyethylene glycol (PEG) supports using strategies based on the 9-fluorenylmethoxycarbonyl amino protecting group: application of PEGylated peptides in biochemical assays. J Pept Sci 2002, 8 (9), 529-42.
    20. Bayer, E.; Mutter, M., Liquid phase synthesis of peptides. Nature 1972, 237 (5357), 512-3.
    21. Deming, T. J., Peptide based materials. Springer: Heidelberg, 2012; p xiii, 171 p.
    22. Habraken, G. J.; Heise, A.; Thornton, P. D., Block copolypeptides prepared by N-carboxyanhydride ring-opening polymerization. Macromol Rapid Commun 2012, 33 (4), 272-86.
    23. Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H.-A.; Zhong, Z., Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog Polym Sci 2014, 39 (2), 330-364.
    24. Kricheldorf, H. R., Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angew Chem Int Ed Engl 2006, 45 (35), 5752-84.
    25. Deming, T. J., Synthesis of Side-Chain Modified Polypeptides. Chem Rev 2016, 116 (3), 786-808.
    26. Leuchs, H.; Geiger, W., A new synthesis of serine. Ber Dtsch Chem Ges 1906, 39, 2644-2649.
    27. Leuchs, H.; Manasse, W., The isomerism of carboethoxy-glycylglycine ester. Ber Dtsch Chem Ges 1907, 40, 3235-3249.
    28. Leuchs, H.; Geiger, W., Concerning the anhydride on alpha-amino-N-carbonic acids and that of alpha-amino acids. Ber Dtsch Chem Ges 1908, 41, 1721-1726.
    29. Wilder, R.; Mobashery, S., The use of triphosgene in preparation of N-carboxy .alpha.-amino acid anhydrides. The Journal of Organic Chemistry 1992, 57 (9), 2755-2756.
    30. Daly, W. H.; Poche, D., The Preparation of N-Carboxyanhydrides of Alpha-Amino-Acids Using Bis(Trichloromethyl)Carbonate. Tetrahedron Lett 1988, 29 (46), 5859-5862.
    31. Huang, J.; Heise, A., Stimuli responsive synthetic polypeptides derived from N-carboxyanhydride (NCA) polymerisation. Chem Soc Rev 2013, 42 (17), 7373-7390.
    32. Deming, T. J., Living polymerization of alpha-amino acid-N-carboxyanhydrides. J Polym Sci Pol Chem 2000, 38 (17), 3011-3018.
    33. Chan, B. A.; Xuan, S. T.; Horton, M.; Zhang, D. H., 1,1,3,3-Tetramethylguanidine-Promoted Ring-Opening Polymerization of N-Butyl N-Carboxyanhydride Using Alcohol Initiators. Macromolecules 2016, 49 (6), 2002-2012.
    34. Buhleier, E.; Wehner, W.; Vogtle, F., Cascade-Chain-Like and Nonskid-Chain-Like Syntheses of Molecular Cavity Topologies. Synthesis-Stuttgart 1978, (2), 155-158.
    35. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A New Class of Polymers - Starburst-Dendritic Macromolecules. Polym J 1985, 17 (1), 117-132.
    36. Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K.; Russo, P. S.; Saunders, M. J., Chemistry of micelles series. Part 2. Cascade molecules. Synthesis and characterization of a benzene[9]3-arborol. J Am Chem Soc 1986, 108 (4), 849-850.
    37. Kesharwani, P.; Jain, K.; Jain, N. K., Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014, 39 (2), 268-307.
    38. Duncan, R.; Izzo, L., Dendrimer biocompatibility and toxicity. Adv Drug Deliver Rev 2005, 57 (15), 2215-2237.
    39. Roberts, J. C.; Bhalgat, M. K.; Zera, R. T., Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst(TM) dendrimers. J Biomed Mater Res 1996, 30 (1), 53-65.
    40. Jevprasesphant, R.; Penny, J.; Jalal, R.; Attwood, D.; McKeown, N. B.; D'Emanuele, A., The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 2003, 252 (1-2), 263-266.
    41. Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H. H.; Xu, J. T.; An, Z. S.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G., Star Polymers. Chem Rev 2016, 116 (12), 6743-6836.
    42. Inoue, K., Functional dendrimers, hyperbranched and star polymers. Prog Polym Sci 2000, 25 (4), 453-571.
    43. Wu, W.; Wang, W. G.; Li, J. S., Star polymers: Advances in biomedical applications. Prog Polym Sci 2015, 46, 55-85.
    44. Byrne, M.; Victory, D.; Hibbitts, A.; Lanigan, M.; Heise, A.; Cryan, S. A., Molecular weight and architectural dependence of well-defined star-shaped poly(lysine) as a gene delivery vector. Biomater Sci-Uk 2013, 1 (12), 1223-1234.
    45. Wang, W. L.; Zhang, L.; Liu, M. T.; Le, Y.; Lv, S. S.; Wang, J. X.; Chen, J. F., Dual-responsive star-shaped polypeptides for drug delivery. Rsc Adv 2016, 6 (8), 6368-6377.
    46. Lam, S. J.; Wong, E. H. H.; O'Brien-Simpson, N. M.; Pantarat, N.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G., Bionano Interaction Study on Antimicrobial Star-Shaped Peptide Polymer Nanoparticles. Acs Appl Mater Inter 2016, 8 (49), 33446-33456.
    47. Annabi, N.; Tamayol, A.; Uquillas, J. A.; Akbari, M.; Bertassoni, L. E.; Cha, C.; Camci-Unal, G.; Dokmeci, M. R.; Peppas, N. A.; Khademhosseini, A., 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Adv Mater 2014, 26 (1), 85-124.
    48. Li, Y.; Maciel, D.; Rodrigues, J.; Shi, X.; Tomas, H., Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chem Rev 2015, 115 (16), 8564-608.
    49. Kabanov, A. V.; Vinogradov, S. V., Nanogels as Pharmaceutical Carriers: Finite Networks of Infinite Capabilities. Angew Chem Int Edit 2009, 48 (30), 5418-5429.
    50. Zhang, H.; Zhai, Y. J.; Wang, J.; Zhai, G. X., New progress and prospects: The application of nanogel in drug delivery. Mat Sci Eng C-Mater 2016, 60, 560-568.
    51. Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K., The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 2008, 33 (4), 448-477.
    52. de la Fuente, M.; Ravina, M.; Paolicelli, P.; Sanchez, A.; Seijo, B.; Alonso, M. J., Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Adv Drug Deliver Rev 2010, 62 (1), 100-117.
    53. Delair, T., Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Biopharm 2011, 78 (1), 10-18.
    54. Douglas, K. L.; Piecirillo, C. A.; Tabrizian, M., Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles. J Control Release 2006, 115 (3), 354-361.
    55. Saraogi, G. K.; Gupta, P.; Gupta, U. D.; Jain, N. K.; Agrawal, G. P., Gelatin nanocarriers as potential vectors for effective management of tuberculosis. Int J Pharm 2010, 385 (1-2), 143-149.
    56. Tseng, C. L.; Su, W. Y.; Yen, K. C.; Yang, K. C.; Lin, F. H., The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 2009, 30 (20), 3476-3485.
    57. Maciel, D.; Figueira, P.; Xiao, S. L.; Hu, D. M.; Shi, X. Y.; Rodrigues, J.; Tomas, H.; Li, Y. L., Redox-Responsive Alginate Nanogels with Enhanced Anticancer Cytotoxicity. Biomacromolecules 2013, 14 (9), 3140-3146.
    58. Cao, Q.-C.; Wang, X.; Wu, D.-C., Controlled cross-linking strategy for formation of hydrogels, microgels and nanogels. Chinese J Polym Sci 2017, 36 (1), 8-17.
    59. Shewan, H. M.; Stokes, J. R., Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. J Food Eng 2013, 119 (4), 781-792.
    60. Eslami, P.; Rossi, F.; Fedeli, S., Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics 2019, 11 (2).
    61. Shi, H.; Wang, Y.; Hua, R., Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry. Phys Chem Chem Phys 2015, 17 (45), 30279-91.
    62. Jones, J. H., The Cativa (TM) Process for the Manufacture of Acetic Acid IRIDIUM CATALYST IMPROVES PRODUCTIVITY IN AN ESTABLISHED INDUSTRIAL PROCESS. Platin Met Rev 2000, 44 (3), 94-105.
    63. Cheema, I. I.; Krewer, U., Operating envelope of Haber–Bosch process design for power-to-ammonia. Rsc Adv 2018, 8 (61), 34926-34936.
    64. Choudary, N. V.; Newalkar, B. L., Use of zeolites in petroleum refining and petrochemical processes: recent advances. Journal of Porous Materials 2010, 18 (6), 685-692.
    65. Wolfenden, R.; Snider, M. J., The depth of chemical time and the power of enzymes as catalysts. Accounts Chem Res 2001, 34 (12), 938-945.
    66. Callahan, B. P.; Miller, B. G., OMP decarboxylase - An enigma persists. Bioorg Chem 2007, 35 (6), 465-469.
    67. Schomburg, I.; Chang, A.; Placzek, S.; Sohngen, C.; Rother, M.; Lang, M.; Munaretto, C.; Ulas, S.; Stelzer, M.; Grote, A.; Scheer, M.; Schomburg, D., BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res 2013, 41 (Database issue), D764-72.
    68. Anfinsen, C. B., Principles That Govern Folding of Protein Chains. Science 1973, 181 (4096), 223-230.
    69. Petsko, G. A.; Ringe, D., Understanding and exploiting the "glass transition" in protein dynamics. Abstr Pap Am Chem S 2003, 225, U781-U781.
    70. Koshland, D. E., Application of a Theory of Enzyme Specificity to Protein Synthesis. P Natl Acad Sci USA 1958, 44 (2), 98-104.
    71. Johnson, K. A.; Goody, R. S., The Original Michaelis Constant: Translation of the 1913 Michaelis-Menten Paper. Biochemistry-Us 2011, 50 (39), 8264-8269.
    72. Loew, O., A new enzyme of general occurrence in organisms. A preliminary note. Science 1900, 11 (279), 701-702.
    73. Schroeder, W. A.; Shelton, J. R.; Shelton, J. B.; Robberson, B.; Apell, G., The amino acid sequence of bovine liver catalase: A preliminary report. Arch Biochem Biophys 1969, 131 (2), 653-655.
    74. Murthy, M. R. N.; Reid, T. J.; Sicignano, A.; Tanaka, N.; Rossmann, M. G., Structure of Beef-Liver Catalase. J Mol Biol 1981, 152 (2), 465-&.
    75. Alfonso-Prieto, M.; Biarnés, X.; Vidossich, P.; Rovira, C., The Molecular Mechanism of the Catalase Reaction. J Am Chem Soc 2009, 131 (33), 11751-11761.
    76. Tamura, A.; Oishi, M.; Nagasaki, Y., Efficient siRNA delivery based on PEGylated and partially quaternized polyamine nanogels: Enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core. J Control Release 2010, 146 (3), 378-387.
    77. Jin, Q. A.; Liu, G. Y.; Li, J. A., Preparation of reversibly photo-cross-linked nanogels from pH-responsive block copolymers and use as nanoreactors for the synthesis of gold nanoparticles. Eur Polym J 2010, 46 (11), 2120-2128.
    78. Cao, X. T.; Showkat, A. M.; Lim, K. T., Synthesis of nanogels of poly(epsilon-caprolactone)-b-poly(glycidyl methacrylate) by click chemistry in direct preparation. Eur Polym J 2015, 68, 267-277.
    79. Nimni, M. E.; Cheung, D.; Strates, B.; Kodama, M.; Sheikh, K., Chemically Modified Collagen - a Natural Biomaterial for Tissue Replacement. J Biomed Mater Res 1987, 21 (6), 741-771.
    80. Liu, S. T.; Tuan-Mu, H. Y.; Hu, J. J.; Jan, J. S., Genipin cross-linked PEG-block-poly(L-lysine)/disulfide-based polymer complex micelles as fluorescent probes and pH-/redox-responsive drug vehicles. Rsc Adv 2015, 5 (106), 87098-87107.
    81. Yamano, T.; Tsujimoto, Y.; Noda, T.; Shimizu, M.; Ohmori, M.; Morita, S.; Yamada, A., Hepatotoxicity of Geniposide in Rats. Food Chem Toxicol 1990, 28 (7), 515-519.
    82. Touyama, R.; Inoue, K.; Takeda, Y.; Yatsuzuka, M.; Ikumoto, T.; Moritome, N.; Shingu, T.; Yokoi, T.; Inouye, H., Studies on the Blue Pigments Produced from Genipin and Methylamine .2. On the Formation Mechanisms of Brownish-Red Intermediates Leading to the Blue Pigment Formation. Chem Pharm Bull 1994, 42 (8), 1571-1578.
    83. Jensen, M.; Keding, R.; Höche, T.; Yue, Y., Biologically Formed Mesoporous Amorphous Silica. J Am Chem Soc 2009, 131 (7), 2717-2721.
    84. Cha, J. N.; Stucky, G. D.; Morse, D. E.; Deming, T. J., Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 2000, 403 (6767), 289-292.
    85. Yuan, J. J.; Mykhaylyk, O. O.; Ryan, A. J.; Armes, S. P., Cross-linking of cationic block copolymer micelles by silica deposition. J Am Chem Soc 2007, 129 (6), 1717-1723.
    86. Hawkins, K. M.; Wang, S. S. S.; Ford, D. M.; Shantz, D. F., Poly-l-Lysine Templated Silicas:  Using Polypeptide Secondary Structure to Control Oxide Pore Architectures. J Am Chem Soc 2004, 126 (29), 9112-9119.
    87. Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of instrumental analysis : Douglas A. Skoog, F. James Holler, Timothy A. Nieman. 5th ed. / ed.; Belmont (Calif.) : Brooks/Cole: 1998.
    88. Striegel, A. M., Modern size-exclusion liquid chromatography : practice of gel permeation and gel filtration chromatography. 2nd ed.; Wiley: Hoboken, N.J., 2009; p xvi, 494 p.
    89. Egerton, R. F., Physical principles of electron microscopy : an introduction to TEM, SEM, and AEM. Springer: New York, NY, 2005; p xii, 202 p.
    90. Mörters, P.; Peres, Y.; Schramm, O.; Werner, W., Brownian motion. Cambridge University Press: Cambridge, UK ; New York, 2010; p xii, 403 p.
    91. Grahame, D. C., The Electrical Double Layer and the Theory of Electrocapillarity. Chem Rev 1947, 41 (3), 441-501.
    92. Lu, D.; Rhodes, D. G., Mixed Composition Films of Spans and Tween 80 at the Air−Water Interface. Langmuir 2000, 16 (21), 8107-8112.
    93. Hsiao, L.-W.; Lai, Y.-D.; Lai, J.-T.; Hsu, C.-C.; Wang, N.-Y.; Wang, S. S. S.; Jan, J.-S., Cross-linked polypeptide-based gel particles by emulsion for efficient protein encapsulation. Polymer 2017, 115, 261-272.
    94. Chiono, V.; Pulieri, E.; Vozzi, G.; Ciardelli, G.; Ahluwalia, A.; Giusti, P., Genipin-crosslinked chitosan/gelatin blends for biomedical applications. J Mater Sci-Mater M 2008, 19 (2), 889-898.
    95. Lai, J. K.; Chuang, T. H.; Jan, J. S.; Wang, S. S. S., Efficient and stable enzyme immobilization in a block copolypeptide vesicle-templated biomimetic silica support. Colloid Surface B 2010, 80 (1), 51-58.
    96. Cho, K.; Chang, H.; Kil, D. S.; Park, J.; Jang, H. D.; Sohn, H. Y., Mechanisms of the Formation of Silica Particles from Precursors with Different Volatilities by Flame Spray Pyrolysis. Aerosol Science and Technology 2009, 43 (9), 911-920.
    97. Han, Y.; Lu, Z.; Teng, Z.; Liang, J.; Guo, Z.; Wang, D.; Han, M. Y.; Yang, W., Unraveling the Growth Mechanism of Silica Particles in the Stober Method: In Situ Seeded Growth Model. Langmuir 2017, 33 (23), 5879-5890.
    98. Żeglin´ski, J.; Piotrowski, G. P.; Piękos´, R., A study of interaction between hydrogen peroxide and silica gel by FTIR spectroscopy and quantum chemistry. Journal of Molecular Structure 2006, 794 (1-3), 83-91.
    99. Sudur, F.; Pleskowicz, B.; Orbey, N., Hydrogen Peroxide Stability in Silica Hydrogels. Industrial & Engineering Chemistry Research 2015, 54 (6), 1930-1940.

    無法下載圖示 校內:2021-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE