| 研究生: |
陳楷捷 Chen, Kai-Chieh |
|---|---|
| 論文名稱: |
不同利率下之調整型投資組合可能性平均數半變異數模糊目標規劃模型 A Possibilistic Mean-Semi-Variance Fuzzy Goal Programming Adjustment Model for Portfolio Selection with Different Borrowing and Lending Rates |
| 指導教授: |
陳梁軒
Chen, Liang-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 多週期投資組合 、平均數-半變異數模型 、模糊理論 、可能性理論 、模糊目標規劃 |
| 外文關鍵詞: | Multi-period portfolio selection, Mean-semi-variance model, Fuzzy theory, Possibility theory, Fuzzy goal programming |
| 相關次數: | 點閱:51 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
資產配置為每個人一生中都會遇到的課題,而在投資過程中投資人視其個別的情況和投資目標,把資產投資到不同種類的投資標的上,例如:股票、債券、房地產及現金等,並在報酬與風險之間做取捨。
在一般的投資組合理論中,經常使用歷史報酬資料的期望值和變異數分別當作未來的報酬與風險,然而投資人傾向只把實際報酬低於期望報酬的部分當作風險,因此半變異數比起變異數,將是更適合的風險測量方法。而在現實金融市場中,投資人獲得的資訊往往是不完整的,且容易被含糊的語意形容詞影響,更存在著許多非機率因子,例如:政治因素、投資人心理因素及天災人禍等,種種因素導致未來報酬無法被精準的預測,而隨著模糊理論的提出,此類充滿著不確定性的問題,便可透過模糊數表達,並進一步求解。
過往的模糊多週期投資組合(fuzzy multi-period portfolio selection)文獻中報酬目標式的設定將導致一些問題,其中包括忽略了新資料的加入、投資人必須預設週期間隔時間導致無法因應市場變化以及因為每個週期的資產皆不同,將導致交易成本項中每個週期的投資比例標準不同,無法比較的情況。因此,本研究提出調整型模型,成功改善過去問題中報酬設定的缺陷,並加入定存融資與多項現實投資條件,再以模糊目標規劃代替單純最佳化的方式求解,利用歸屬程度表達對目標達成之滿意度,滿足不同投資人對於報酬與風險的要求。
結果顯示加入定存與融資設定除了可使投資組合解更優,也能擴大可行解範圍,且以下半變異數衡量風險可有效降低下行風險,滿足投資人對於實際報酬低於期望報酬的部分愈小愈好的偏好。
In modern portfolio theory, expected values and variances in the historical return data are used to measure future returns and risks, respectively. However, investors tend to take the part of the actual value that is below the expected value as the risk measurement. Therefore, instead of variance, semi-variance would be a more proper measurement of risk. The information that investors get in the real-world financial market is often incomplete, and there are also many non-probabilistic factors in real-world portfolio decision-making, including political and psychological factors, as well as natural or man-made disasters, that will affect the precision of predictions of future returns. Therefore, it is imperative to consider returns as fuzzy numbers and further to solve the uncertainty problem. In the past literature, researchers attempting to solve the fuzzy multi-period portfolio selection problem encountered problems, including ignoring new data and investors having to preset the interval time, which led to a lack of a response to changeable markets. Also, the capital in each period was different, so the proportion of capital invested in each period could not be compared. Therefore, in this study, an adjustment model was proposed, where the problems encountered in the past literature were successfully resolved, and where lending, borrowing, and real world investing constraints were added. In addition, the problem was solved using fuzzy goal programming instead of optimization, which used the fuzzy membership function to express the degree to which goals and requirements for returns and reduced risks for investors were met. The results showed that settings related to lending and borrowing not only create a better efficient frontier, but also expand the feasible solution region.
Arnott, R. D., & Wagner, W. H. (1990). The measurement and control of trading costs. Financial Analysts Journal, 46(6), 73-80.
Bernard, C., Rüschendorf, L., & Vanduffel, S. (2015). Value-at-risk bounds with variance constraints. Journal of Risk and Insurance, 84(3), 923-959.
Bertsimas, D., & Pachamanova, D. (2008). Robust multiperiod portfolio management in the presence of transaction costs. Computers & Operations Research, 35(1), 3-17.
Carlsson, C., & Fullér, R. (2001). On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems, 122(2), 315-326.
Charnes, A., & Cooper, W. W. (1961). Management models and industrial applications of linear programming. Wiley, New York.
Chen, L. H., &Tsai, F. C. (2001). Fuzzy goal programming with different importance and priorities. European Journal of Operational Research, 133(3), 548-556.
Chen, W., Yang, Y., & Ma, H. (2011). Fuzzy Portfolio Selection Problem with Different Borrowing and Lending Rates. Mathematical Problems in Engineering, 2011, 1-15.
Dubois, D. & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613-626.
Hannan, E. (1981). On fuzzy goal programming. Decision Sciences, 12, 522-531.
Huang, X. (2008). Mean-Entropy Models for Fuzzy Portfolio Selection. IEEE Transactions on Fuzzy Systems, 16(4), 1096-1101.
Huang, X. (2008). Mean-semivariance models for fuzzy portfolio selection. Journal of Computational and Applied Mathematics, 217(1), 1-8.
Li, B., Zhu, Y., Sun, Y., Aw, G., & Teo, K. L. (2018). Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. Applied Mathematical Modelling, 56, 539-550.
Li, P., & Liu, B. (2008). Entropy of Credibility Distributions for Fuzzy Variables. IEEE Transactions on Fuzzy Systems, 16(1), 123-129.
Li, X., Qin, Z., & Kar, S. (2010). Mean-variance-skewness model for portfolio selection with fuzzy returns. European Journal of Operational Research, 202(1), 239-247.
Liu, Y. J., Zhang, W. G., & Xu, W. J. (2012). Fuzzy multi-period portfolio selection optimization models using multiple criteria. Automatica, 48(12), 3042-3053.
Liu, Y. J., Zhang, W. G., & Zhang, P. (2013). A multi-period portfolio selection optimization model by using interval analysis. Economic Modelling, 33, 113-119.
Liu, Y. J., & Zhang, W. G. (2015). A multi-period fuzzy portfolio optimization model with minimum transaction lots. European Journal of Operational Research, 242(3), 933-941.
Liu, Y. J., Zhang, W. G., & Zhao, X. J. (2016). Fuzzy multi-period portfolio selection model with discounted transaction costs. Soft Computing, 22(1), 177-193.
Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.
Mehlawat, M. K. (2016). Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels. Information Sciences, 345, 9-26.
Mohamed, R. H. (1997). The relationship between goal programming and fuzzy programming. Fuzzy Sets and Systems, 89(2), 215-222.
Sadjadi, S. J., Seyedhosseini, S. M., & Hassanlou, K. (2011). Fuzzy multi period portfolio selection with different rates for borrowing and lending. Applied Soft Computing, 11(4), 3821-3826.
Saeidifar, A., & Pasha, E. (2009). The possibilistic moments of fuzzy numbers and their applications. Journal of Computational and Applied Mathematics, 223(2), 1028-1042.
Speranza, M. G. (1993). Linear programming models for portfolio optimization. Finance, 14, 107-123
Tiwari, R.N., Dharmar, S., & Rao, J.R. (1987). Fuzzy goal programming - an additive model. Fuzzy Sets and Systems, 24, 27-34.
Vercher, E., Bermúdez, J. D., & Segura, J. V. (2007). Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems, 158(7), 769-782.
Wang, B., Wang, S., & Watada, J. (2011). Fuzzy-Portfolio-Selection Models With Value-at-Risk. IEEE Transactions on Fuzzy Systems, 19(4), 758-769.
Wang, S., Watada, J., & Pedrycz, W. (2009). Value-at-Risk-Based Two-Stage Fuzzy Facility Location Problems. IEEE Transactions on Industrial Informatics, 5(4), 465-482.
Watada, J.(2001). Fuzzy Portfolio Model for Decision Making in Investment. Dynamical Aspects in Fuzzy Decision Making, 73, 141-162.
Yue, W., Wang, Y., & Xuan, H. (2018). Fuzzy multi-objective portfolio model based on semi-variance–semi-absolute deviation risk measures. Soft Computing, 23, 8159-8179.
Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353.
Zhang, P., & Zhang, W. G. (2014). Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints. Fuzzy Sets and Systems, 255, 74-91.
Zhang, J., & Li, Q. (2019). Credibilistic Mean-Semi-Entropy Model for Multi-Period Portfolio Selection with Background Risk. Entropy, 21(10), 944.
Zhang, W. G., Liu, Y. J., & Xu, W. J. (2012). A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs. European Journal of Operational Research, 222(2), 341-349.
Zhang, W. G., & Liu, Y. J. (2013). Credibilitic mean-variance model for multi-period portfolio selection problem with risk control. OR Spectrum, 36(1), 113-132.
Zhang, W. G., Liu, Y. J., & Xu, W. J. (2014). A new fuzzy programming approach for multi-period portfolio optimization with return demand and risk control. Fuzzy Sets and Systems, 246, 107-126.
Zhang, X., Zhang, W., & Xiao, W. (2013). Multi-period portfolio optimization under possibility measures. Economic Modelling, 35, 401-408.
Zhou, J., Li, X., & Pedrycz, W. (2016). Mean-Semi-Entropy Models of Fuzzy Portfolio Selection. IEEE Transactions on Fuzzy Systems, 24(6), 1627-1636.
Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55.