| 研究生: |
李承漢 Li, Cheng-Han |
|---|---|
| 論文名稱: |
富矽氮化矽與其金屬摻雜薄膜製備、微結構與發光性質之研究 A study on fabrication, microstructure and photoluminescence properties of SRN and metal doped SRN thin films |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 富矽氮化矽 、磁控濺鍍 、金屬摻雜 、矽奈米晶粒 、光激發螢光 |
| 外文關鍵詞: | Silicon-rich nitride (SRN), Magnetron sputtering, Silicon nanocrystal (nc-Si), photoluminescence |
| 相關次數: | 點閱:97 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用反應式磁控濺鍍系統製備富矽氮化矽(Silicon-rich nitride, SRN)薄膜,並藉由改變退火製程、金屬摻雜形成複合薄膜及沈積在不同孔洞大小的陽極氧化鋁(Anodic aluminum oxide, AAO)模板等,對薄膜的微結構與發光性質的影響進行比較。結果性質分析方面,以低掠角X光繞射儀(GIXRD)分析其微結構與結晶相;以高解析場發射式掃描式電子顯微鏡(HR-SEM)觀察薄膜表面形貌;以傅立葉轉換紅外線分光光譜儀(FTIR)、X光光電子能譜儀(XPS)及拉曼光譜(Raman)進行薄膜化學組成與鍵結分析;以光激發螢光光譜(PL)觀察其薄膜的發光行為性質。
本論文第一部份為不同退火製程對SRN薄膜微結構與發光性質的影響之研究。當使用CO2雷射退火的SRN薄膜結晶性及鍵結強度都較高真空爐內退火來得佳,這是因為CO2雷射退火瞬間產生的能量較高將有助於析出矽奈米晶粒,且在PL光譜有明顯的可見光發光強度,這是因為薄膜界面的鍵結所產生的非輻射缺陷能態在高溫下被移除,與矽奈米晶粒鑲嵌在SiNx基質中,所引起的量子尺寸與Si-N鍵結的侷限態效應的貢獻。本論文第二部份討論金屬(Al、Ti、Ta)摻雜SRN形成複合薄膜的微結構與發光性質的影響,在大氣下高溫退火700 °C使薄膜氧含量增加且參與反應形成金屬氧化物,相較於單層SRN薄膜,此金屬氧化物的形成所產生的深層能階發光和結晶相中晶格發光將有助於SRN複合薄膜整體的發光強度及波段提升,因此有機會應用在發光元件上。而本論文最後一部份討論矽奈米晶粒鑲嵌於AAO模板上的研究,基於模板的空間限域作用來控制矽奈米晶粒的大小,且隨著半導體奈米晶粒的量子尺寸效應對能帶結構的影響,進一步控制PL的發光波段。
In this study, silicon-rich nitride (SRN) thin films were deposited on the Si(100) substrates and anodic aluminum oxide (AAO) templates by radio frequency reactive magnetron sputtering. We investigated different annealing process, annealing temperature and metal doping affects the SRN nanocomposites thin films. The material properties include microstructure, surface morphology and photoluminescence behaviors of the SRN and metal doped SRN films. We used grazing incidence X-ray diffraction (GIXRD) to analyze crystal phase, high-resolution field emission scanning electron microscope (HR-SEM) to analyze surface morphology, Raman spectroscopy, X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) to analyze the chemical compositions and bonding, photoluminescence (PL) to measure band gap of the SRN and metal doped SRN films. Then we used these results to explain our experimental data.
In the first part, the microstructure and photoluminescence property of SRN thin films as function of different annealing process were discussed. The CO2 laser annealing was better than high vacuum annealing to increase crystalline and bonding intensity, because the CO2 laser energy generate higher energy will help to precipitate silicon nanocrystals. Due to the nc-Si, defect states in imperfection of interface between the Si-O-Si and the located state related to the Si-N bond in the SiNx matrix to produce the visible PL and increasing temperature enhances the formation of more recombination in the localized states of Si-N bonds and nc-Si for the improved PL intensity. In the second part, the microstructure and optoelectronic characteristics of metal (Al, Ti, Ta) doped SRN nanocomposite films were discussed. High temperature annealing in the air will increase the oxygen content of the films and will form the metal oxide. Compared to single layer SRN film, this metal oxides produced the deep-level emissions of oxygen vacancies and lattice emissions will help metal doped SRN nanocomposite films as a whole to enhance the luminous intensity and wavelength. Therefore, the nanocomposite films with novel metal doped PL should apply to the optoelectronic devices. In the final part, the effect of different size AAO porous on the evolution of microstructure and PL behavior by nc-Si on AAO template, due to the spatially confined synthesis of AAO template that the size of nc-Si could be controlled by the pore diameter of AAO template. Quantum size effect was obvious for the present samples and remarkable red shift was shown in the obtained spectra.
[1] A. G. Cullis and L. T. Canham, "Visible-light emmision due to quantum size effects in highly porous crystalline silicon," Nature, vol. 353, pp. 335-338, 1991.
[2] J. M. Shainline and J. Xu, "Silicon as an emissive optical medium," Laser & Photonics Reviews, vol. 1, pp. 334-348, 2007.
[3] P. M. Fauchet, "Monolithic silicon light sources," Silicon Photonics, vol. 94, pp. 177-198, 2004.
[4] L. Pavesi, "Will silicon be the photonic material of the third millenium," Journal of Physics-Condensed Matter, vol. 15, pp. 1169-1196, 2003.
[5] R. Huang, K. Chen, P. Han, H. Dong, X. Wang, D. Chen, W. Li, J. Xu, Z. Ma, and X. Huang, "Strong green-yellow electroluminescence from oxidized amorphous silicon nitride light-emitting devices," Applied Physics Letters, vol. 90, pp. 093515, 2007.
[6] 陳光華, "奈米薄膜技術與應用," 五南出版社, 2005.
[7] H. Jeong, S. Y. Seo, and J. H. Shin, "Excitation mechanism of visible, Tb3+ photoluminescence from Tb-doped silicon oxynitride," Applied Physics Letters, vol. 88, pp. 161910, 2006.
[8] T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graham, and J. Scanlon, "Epitaxial-growth of zinc blende and wurtzitic gallium nitride thin-films on (001) silicon," Applied Physics Letters, vol. 59, pp. 944-946, 1991.
[9] S. Picozzi, A. Continenza, and A. J. Freeman, "Co2MnX (X=Si, Ge, Sn) Heusler compounds: An ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure," Physical Review B, vol. 66, pp. 094421, 2002.
[10] M. Bauer, J. Taraci, J. Tolle, A. V. G. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. W. Hu, and J. Kouvetakis, "Ge-Sn semiconductors for band-gap and lattice engineering," Applied Physics Letters, vol. 81, pp. 2992-2994, 2002.
[11] J. Warga, R. Li, S. N. Basu, and L. Dal Negro, "Electroluminescence from silicon-rich nitride/silicon superlattice structures," Applied Physics Letters, vol. 93, pp. 151116, 2008.
[12] Y. Q. Wang, Y. G. Wang, L. Cao, and Z. X. Cao, "High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride," Applied Physics Letters, vol. 83, pp. 3474, 2003.
[13] L. Jiang, X. Zeng, and X. Zhang, "The effects of annealing temperature on photoluminescence of silicon nanoparticles embedded in SiNx matrix," Journal of Non-Crystalline Solids, vol. 357, pp. 2187-2191, 2011.
[14] R. Huang, X. Wang, J. Song, Y. Guo, H. Ding, D. Wang, J. Xu, and K. Chen, "Strong orange–red light emissions from amorphous silicon nitride films grown at high pressures," Scripta Materialia, vol. 62, pp. 643-645, 2010.
[15] B. Rezgui, A. Sibai, T. Nychyporuk, M. Lemiti, and G. Brémond, "Photoluminescence and optical absorption properties of silicon quantum dots embedded in Si-rich silicon nitride matrices," Journal of Luminescence, vol. 129, pp. 1744-1746, 2009.
[16] G. Scardera, T. Puzzer, I. Perez-Wurfl, and G. Conibeer, "The effects of annealing temperature on the photoluminescence from silicon nitride multilayer structures," Journal of Crystal Growth, vol. 310, pp. 3680-3684, 2008.
[17] I. O. Parm and J. Yi, "Exciton luminescence from silicon nanocrystals embedded in silicon nitride film," Materials Science and Engineering: B, vol. 134, pp. 130-132, 2006.
[18] L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light emission from silicon-rich nitride nanostructures," Applied Physics Letters, vol. 88, pp. 183103, 2006.
[19] A. Morales-Sánchez, K. M. Leyva, M. Aceves, J. Barreto, C. Domínguez, J. A. Luna-López, J. Carrillo, and J. Pedraza, "Photoluminescence enhancement through silicon implantation on SRO-LPCVD films," Materials Science and Engineering: B, vol. 174, pp. 119-122, 2010.
[20] Y. Lebour, P. Pellegrino, S. Hernández, A. Martínez, E. Jordana, J. M. Fedeli, and B. Garrido, "Comparative study of Si precipitation in silicon-rich oxide films," Physica E: Low-dimensional Systems and Nanostructures, vol. 41, pp. 990-993, 2009.
[21] Y. H. So, S. Huang, G. Conibeer, and M. A. Green, "Formation and photoluminescence of Si nanocrystals in controlled multilayer structure comprising of Si-rich nitride and ultrathin silicon nitride barrier layers," Thin Solid Films, vol. 519, pp. 5408-5412, 2011.
[22] J. S. Cherng, S. H. Chang, and S. H. Hong, "Nanocrystalline silicon films directly made by pulsed-DC magnetron sputtering," Surface and Coatings Technology, vol. 13, pp. 17952, 2012.
[23] C. Y. Hsiao, C. F. Shih, S. H. Chen, and W. T. Jiang, "Comparison of silicon nanocrystals embedded silicon oxide films by sputtering and PECVD," Thin Solid Films, vol. 519, pp. 5086-5089, 2011.
[24] I. F. Crowe, N. Papachristodoulou, M. P. Halsall, N. P. Hylton, O. Hulko, A. P. Knights, P. Yang, R. M. Gwilliam, M. Shah, and A. J. Kenyon, "Donor ionization in size controlled silicon nanocrystals: The transition from defect passivation to free electron generation," Journal of Applied Physics, vol. 113, pp. 24304, 2013.
[25] R. Khelifi, D. Mathiot, R. Gupta, D. Muller, M. Roussel, and S. b. Duguay, "Efficient n-type doping of Si nanocrystals embedded in SiO2 by ion beam synthesis," Applied Physics Letters, vol. 102, pp. 13116, 2013.
[26] M. López, B. Garrido, C. Garcı́a, P. Pellegrino, A. Pérez-Rodrı́guez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, "Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2," Applied Physics Letters, vol. 80, pp. 1637, 2002.
[27] C. G. Ahn, T. S. Jang, K. H. Kim, Y. K. Kwon, and B. Kang, "Size and Interface State Dependence of the Luminescence Properties in Si Nanocrystals," Japanese Journal of Applied Physics, vol. 42, pp. 2382-2386, 2003.
[28] B. Delley and E. Steigmeier, "Quantum confinement in Si nanocrystals," Physical Review B, vol. 47, pp. 1397-1400, 1993.
[29] R. Krishnan, "Silicon Nanocrystals: Structural, Electrical and Optical Properties," Dissertation Abstracts International, vol. 6603, pp. 1665, 2005.
[30] S. Kim, D. H. Shin, D. Y. Shin, C. O. Kim, J. H. Park, S. B. Yang, S. H. Choi, S. J. Yoo, and J. G. Kim, "Luminescence Properties of Si Nanocrystals Fabricated by Ion Beam Sputtering and Annealing," Journal of Nanomaterials, vol. 20, pp. 1-8, 2012.
[31] M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, "Light emitting devices based on nanocrystalline-silicon multilayer structure," Physica E: Low-dimensional Systems and Nanostructures, vol. 41, pp. 912-915, 2009.
[32] B. H. Kim, C. H. Cho, T. W. Kim, N. M. Park, G. Y. Sung, and S. J. Park, "Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4," Applied Physics Letters, vol. 86, pp. 091908, 2005.
[33] K. M. Lee, T. H. Kim, and W. S. Hong, "Formation of nanocrystals embedded in a silicon nitride film at a low temperature (≦200°C)," Scripta Materialia, vol. 59, pp. 1190-1192, 2008.
[34] P. Fauchet, "Light emission from Si quantum dots," Materials Today, vol. 8, pp. 26-33, 2005.
[35] T. Suominen, P. Paturi, H. Huhtinen, L. Heikkilä, H. P. Hedman, R. Punkkinen, and R. Laiho, "Conductivity and distribution of charge on electroluminescent Si/SiO2 structures investigated by electrostatic force microscopy," Applied Surface Science, vol. 222, pp. 131-137, 2004.
[36] R. Huang, K. Chen, B. Qian, S. Chen, W. Li, J. Xu, Z. Ma, and X. Huang, "Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films," Applied Physics Letters, vol. 89, pp. 221120, 2006.
[37] 謝嘉民、賴一凡、林永昌、枋志堯, "光激發螢光量測的原理、架構及應用," 奈米通訊, vol. 第12 卷第2 期, 2005.
[38] H. Dong, K. Chen, D. Wang, W. Li, Z. Ma, J. Xu, and X. Huang, "A new luminescent defect state in low temperature grown amorphous SiNxOy thin films," physica status solidi (c), vol. 3, pp. 828-831, 2010.
[39] S. P. Withrow, C. W. White, A. Meldrum, J. D. Budai, D. M. Hembree, and J. C. Barbour, "Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2," Journal of Applied Physics, vol. 86, pp. 396-401, 1999.
[40] M. B. Park and N. H. Cho, "Structural, chemical and optical features of nanocrystalline Si films prepared by PECVD techniques," Applied Surface Science, vol. 190, pp. 151-156, 2002.
[41] C. H. Chang, Y. H. Pai, J. H. He, and G. R. Lin, "Wavelength-tunable blue photoluminescence of <2nm Si nanocrystal synthesized by ultra-low-flow-density PECVD," Acta Materialia, vol. 58, pp. 1270-1275, 2010.
[42] K. M. Lee, T. H. Kim, J. D. Hwang, S. Jang, K. Jeong, M. Han, S. Won, J. Sok, K. Park, and W. S. Hong, "Size control of silicon nanocrystals in silicon nitride film deposited by catalytic chemical vapor deposition at a low temperature (⩽200°C)," Scripta Materialia, vol. 60, pp. 703-705, 2009.
[43] T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, "Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3," Applied Physics Letters, vol. 88, pp. 123102, 2006.
[44] I. Dogan, I. Yildiz, and R. Turan, "PL and XPS depth profiling of Si/Al2O3 co-sputtered films and evidence of the formation of silicon nanocrystals," Physica E: Low-dimensional Systems and Nanostructures, vol. 41, pp. 976-981, 2009.
[45] J. Sun, X. Han, X. W. Du, and Y. W. Lu, "The enhancement of photoluminescence from porous silicon with Si–Ti bond," Materials Letters, vol. 59, pp. 3135-3137, 2005.
[46] M. Zhu, Z. Zhang, and W. Miao, "Intense photoluminescence from amorphous tantalum oxide films," Applied Physics Letters, vol. 89, pp. 021915, 2006.
[47] Y. H. P. a. G. R. Lin, "Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane," Optics Express, vol. 19, pp. 896-905, 2011.
[48] H. Hu and D. He, "Fabrication of Si nanodot arrays by plasma enhanced CVD using porous alumina templates," Materials Letters, vol. 60, pp. 1019-1022, 2006.
[49] C. K. Chung and M. Y. Wu, "A hybrid CO2 laser processing for silicon etching," Optics Express, vol. 15, pp. 7269-7274, 2007.
[50] R. Chen, D. F. Qi, Y. J. Ruan, S. W. Pan, S. Y. Chen, S. Xie, C. Li, H. K. Lai, and H. D. Sun, "Effect of excimer laser annealing on the silicon nanocrystals embedded in silicon-rich silicon nitride film," Applied Physics A, vol. 106, pp. 251-255, 2011.
[51] Z. Cen, J. Xu, Y. Liu, W. Li, L. Xu, Z. Ma, X. Huang, and K. Chen, "Visible light emission from single layer Si nanodots fabricated by laser irradiation method," Applied Physics Letters, vol. 89, pp. 163107, 2006.
[52] L. V. Mercaldo, E. M. Esposito, P. D. Veneri, G. Fameli, S. Mirabella, and G. Nicotra, "First and second-order Raman scattering in Si nanostructures within silicon nitride," Applied Physics Letters, vol. 97, pp. 153112, 2010.
[53] H. L. Hao, L. K. Wu, W. Z. Shen, and H. F. W. Dekkers, "Origin of visible luminescence in hydrogenated amorphous silicon nitride," Applied Physics Letters, vol. 91, pp. 201922, 2007.
[54] K. Ma, J. Y. Feng, and Z. J. Zhang, "Improved photoluminescence of silicon nanocrystals in silicon nitride prepared by ammonia sputtering," Nanotechnology, vol. 17, pp. 4650, 2006.
[55] G. R. C. J. Zhou, Y. Liu, J. Xu, T. Wang, N. Wan, Z. Y. Ma, W. Li, C. Song and K. J. Chen, "Electroluminescent devices based on amorphous SiN/Si quantum dots/amorphous SiN sandwiched structures," Optical Express, vol. 17, pp. 156-162, 2009.
[56] S. Naskar, S. D. Wolter, C. A. Bower, B. R. Stoner, and J. T. Glass, "Verification of the O-Si-N complex in plasma-enhanced chemical vapor deposition silicon oxynitride films," Applied Physics Letters, vol. 14, pp. 261907-261910, 2005.
[57] P. W. Voorhees, "The Theory of Ostwald Ripening," Journal of Statistical Physics, vol. 38, pp. 231-252, 1985.
[58] C. K. Chung, T. Y. Chen, and C. W. Lai, "Microstructure-induced novel white photoluminescence from rapid-thermal-annealed two-layer Si/C on Si(100) with nanocomposite Si, SiC and C nanocrystals," Scripta Materialia, vol. 65, pp. 432-435, 2011.
[59] J. W. Bae, J. W. Lim, K. Mimura, and M. Isshiki, "Ion beam deposition of α-Ta films by nitrogen addition and improvement of diffusion barrier property," Thin Solid Films, vol. 515, pp. 4768-4773, 2007.
[60] A. Adamczyk and E. Dlugon, "The FTIR studies of gels and thin films of Al2O3-TiO2 and Al2O3-TiO2-SiO2 systems," Spectrochim Acta A Mol Biomol Spectrosc, vol. 89, pp. 7-11, 2012.
[61] P. M. Kumar, S. Badrinarayanan, and M. Sastry, "Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states," Thin Solid Films, vol. 358, pp. 122-130, 2000.
[62] R. R. Krishnan, R. Vinodkumar, G. Rajan, K. G. Gopchandran, and V. P. Mahadevan Pillai, "Structural, optical, and morphological properties of laser ablated ZnO doped Ta2O5 films," Materials Science and Engineering: B, vol. 174, pp. 150-158, 2010.
[63] D. Lehmhus and G. Rausch, "Tailoring Titanium Hydride Decomposition Kinetics by Annealing in Various Atmospheres," Advanced Engineering Materials, vol. 6, pp. 313-330, 2004.
[64] Jing Liqiang, Sun Xiaojun, Cai Weimin, Xu Zili, Du Yaoguo, and F. Honggang, "The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity," Journal of Physics and Chemistry of Solids, vol. 64, pp. 615-623, 2003.
[65] S. Livraghi, M. C. Paganini, E. Giamello, A. Selloni, C. D. Valentin, and G. Pacchioni, "Origin of Photoactivity of Nitrogen-Doped Titanium Dioxide under Visible Light," Journal of American Chemical Society, vol. 128, pp. 15666-15671, 2006.
[66] M. A. Henderson, W. S. Epling, C. H. F. Peden, and C. L. Perkins, "Insights into Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2 (110)," Journal of American Chemical Society, vol. 107, pp. 534-545, 2003.
[67] H. Shin, S. Y. Park, S.-T. Bae, S. Lee, K. S. Hong, and H. S. Jung, "Defect energy levels in Ta2O5 and nitrogen-doped Ta2O5," Journal of Applied Physics, vol. 104, pp. 116108, 2008.
[68] G. Faraci, S. Gibilisco, P. Russo, A. Pennisi, and S. La Rosa, "Modified Raman confinement model for Si nanocrystals," Physical Review B, vol. 73, pp. 033307, 2006.