簡易檢索 / 詳目顯示

研究生: 李榮茂
Lee, Rong-Mao
論文名稱: 馬達與電動輔具車測試系統之設計發展
Design & Development of Motor and Powered Wheelchair Testing System
指導教授: 鍾高基
Chung, Kao-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 114
中文關鍵詞: 馬達電動輔具車電動代步車電動輪椅
外文關鍵詞: motor, wheelchair
相關次數: 點閱:80下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電動輪椅及代步車為不同功能性障礙之中重度神經肌肉病變患者的日常生活行動輔助交通工具,然而一般電動輔具車在開發過程中欠缺整體系統考量設計(車體結機構、運動及動力驅動、馬達與控制器之動力匹配等),在缺乏系統規格設定、驅動力學分析模擬、操作環境分析的研究發展及文獻參考資料情況下,無法系統化的選取適當組件匹配及操作控制參數,因此往往無法有效提昇輔具車整體效益。
    因此本研究之目的為:系統化設計發展馬達及電動輔具車測試系統,探討量測馬達整體運轉機制及效能,量化馬達電壓、電流、轉矩、速度間等關係曲線,及評估電動輔具車整體機電整合運轉性能,提供動力系統匹配之選擇、研發數位式控制器的基本資料及電動輪椅/代步車成品的基本性能測試,以提昇符合個人身心障礙功能性需求之行動科技輔具。特定目標包括:(1)設計發展馬達特性測試系統以探討量測馬達動力特性及特性參數:其整體架構為以電磁煞車器給予輸出負載之模擬,及扭力計、轉速計、電壓電流感測器來量化馬達轉矩、轉速、電壓、電流等參數,並透過信號擷取設備及工業電腦來儲存測試數據及進行特性關係曲線的描繪;此外並提供控制器與馬達連線測試功能,提供動力匹配狀況及控制器雛型之檢測;(2)設計發展電動輔具車測試系統評估輔具車整體功能性:在進行實際道路測試之前,以此動態測試系統對電動輪椅/代步車作室內動態性能以及功能性的模擬測試,以坡度模擬裝置、差速測試裝置及環境阻力模擬裝置,分別檢測輔具車輛的爬坡能力、差速狀況以及模擬真實行車狀況之整體表現,功能性測試之結果可供研發設計人員改進之依據以及使用者選取輔具車之參考。
    研發設計完成之馬達及電動輔具車測試系統,其校正結果顯示馬達測試系統之電磁煞車器、扭力計、轉速計元件具有相當高的準確度,能提供有效且正確的馬達輸出負載模擬及參數監測功能;電動輔具車測試系統部分其角度、環境阻力模擬及轉速測量功能之誤差也都相當細微,提供精確的行車狀況模擬及參數監控結果。
    對於馬達特性以及電動輔具車功能性之測試實驗結果,清楚且詳細的顯示出四顆馬達之參數特性,由數據分析結果中除了可以清楚了解不同類型輔具車使用馬達之特性外,並提供同一馬達在不同電源供應及阻力負載下的變動特性,電動輔具車之功能性測試除了可以檢驗初步設計完成輔具車雛形之功能性、設計缺點外,更提供較原廠詳盡的性能參數數據,可針對電動輔具車之相關安全規範以及個人之需求做了解與探討。
    測試系統未來研究及改良方向包括:擴充馬達測試系統對於不同類型馬達之測試功能,以提供更多類型、廣泛的馬達測試評估工作;以及電動輔具車動態測試及場地測試之進階規劃,以更完善、嚴謹的進行輔具車成品的功能評估工作。

    Powered wheelchairs (PWCs) and scooters are the major mobility device for the neuromuscular skeletal impairment, elderly or chronic illness. Current design and development of the powered mobility device are often lacking of systematic consideration on structure and kinetics/dynamics of propulsion as well as power system (motor, Controller), and integrated design with appropriate components matching. Therefore, it is always lead to poor efficiency and performance of PWCs.
    This research was to design and develop a motor testing system and a PWC/scooter testing system for providing motor characteristics (voltage, current, torque, speed, efficiency) in appropriate power system selection and information to improve digital controller design, and for performance and efficiency evaluation of PWCs and scooters, respectively. The specific aims of this research included: (1)Design and Development of a motor testing system consisting of powder break, torque meter, tachometer, voltage and current sensors, to measure power characteristics. The powder break is used to simulate working loads on motor, and the speed, voltage, current, torque parameters are measured and evaluated. The motor efficiency is calculated by (Torque Speed/Voltage Current);(2)Design and Development of a PWC/scooter testing system, consisting of powder break, actuator, tachometer, voltage, current and temperature sensors, to measure functional performance. Static and dynamic testing on climbing slope simulation and differential simulation and working load simulation are conducted through this system, and the parameters of PWC/scooter are measured and evaluated for the performance. The collected data provide useful information to consumers and manufactures.
    Calibration of the motor testing system shows that the powder break, tachometer and torque meter are functional well with very high accuracy and consistency. The PWC/scooter testing system functions very well to provide static and dynamic testing on powered wheelchairs and scooters. Both systems are useful to provide power characteristics of PMDC motor and functional performance of powered wheelchairs and scooters.
    The results of PMDC motors testing indicate that there are significant difference in the maximum torque output and speed between powered wheelchair and scooter motors, and provide the characteristics of each motor under different applied voltages and working loads. The PWC/Scooter testing system is valuable to provide more detailed data than those supplied from manufactures. The information resulted from two testing system will be used to improve PWC design lead to more independence for the person with disabilities
    The future work is suggested as following:(1)expand the function of motor testing system for AC motor, servo motor and etc.;(2)develop more simulation testing and conduct field testing for powered wheelchairs and scooters.

    中文摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1.1電動輔具車使用族群簡介 1 1.2電動輔具車分類及驅動型態 2 1.2.1電動輔具車科技 6 1.2.2馬達分類及應用 10 1.3電動輔具車驅動之動態模式 20 1.3.1馬達動力與電動輔具車驅動的關係 21 1.3.2馬達動力規格需求分析 22 1.3.3馬達選取考量 23 1.3.4永磁式直流馬達(PMDC)模型 25 1.3.5電動輔具車之性能參數 28 1.4文獻回顧 29 1.5研究動機與目的 30 第二章 材料與方法 2.1馬達特性測試系統 32 2.1.1馬達特性測試平台:電磁煞車器 33 2.1.2馬達特性測試平台:轉速量測裝置 35 2.1.3馬達特性測試平台:扭力計 36 2.1.4馬達特性測試平台:DC電源供應器 38 2.1.5馬達特性測試平台:電壓及電流Sensor 39 2.1.6工業電腦及訊號擷取卡(Adlink 9112) 40 2.1.7馬達測試控制軟體 40 2.2電動輔具車測試系統 41 2.2.1動態模擬測試平台:差速測試裝置 43 2.2.2動態模擬測試平台:負載模擬裝置 44 2.2.3動態模擬測試平台:坡度模擬裝置 45 2.2.4動態模擬測試平台:角度、速度量測裝置 46 2.2.5動態模擬測試平台:電壓、電流及溫度感測元件 46 2.2.6電動輔具車測試控制軟體 47 2.3實驗設計及規劃 48 2.3.1直流有刷馬達特性測試 48 2.3.2電動輔具車基本性能測試 50 2.4系統校正 55 2.4.1馬達測試系統元件校正 55 2.4.2電動輔具車測試系統元件校正 61 第三章 結果與討論 3.1 馬達特性測試系統之功能 66 3.1.1馬達特性測試系統組件校正結果 67 3.1.2永磁式直流有刷馬達之特性分析 74 3.2 電動輔具車測試系統之功能 89 3.2.1電動輔具車測試系統組件校正結果 90 3.2.2電動輔具車功能特性分析 92 第四章 結論與未來研究方向 馬達測試系統功能之擴充 97 電動輔具車動態測試及場地測試之研究方向 97 參考文獻 98 附錄一 馬達實測原始資料 100

    [1]C.A. MacLaurin, Wheelchair Mobility – A Summary of Activities, RESNA PRESS, UVA, 1981.
    [2]V. Diaz, New Sonar Configuration for A Powered Wheelchair, IEEE Engineering in Medicine and Biology, pp. 113 -119, 1999.
    [3]J.H. Aylor, A Fault-Tolerant Optical Joystick Control Integated Circuit for A Powered Wheelchair, RESNA International ’92, pp. 307-309 , 1992.
    [4]Fred Powell and R.M. Inigo, Microprocessor Based D.C. Brushless Motor Controller for Wheelchair Propulsion, RESNA International ’92, pp. 313-315, 1992.
    [5]S.T. Chapman, Electric Machinery Fundamantals, McGraw-Hill, 1991.
    [6]ECRI, Evaluation : Rechargeable, Deep-Cycle, Lead-Acid Batteries for Powered Wheelchair and Scooter Users, Health Devices, ECRI, Plymouth Meeting, PA, Vol. 20, No. 12, pp. 474-494, 1991.
    [7]B.W. Johnson and J.H. Aylor, Dynamic Modeling of an Electric Wheelchair, IEEE Transactions on Industry Applications, IA-21, No. 5, 1985.
    [8]R.M. Inigo, Electric Wheelchair Permanent Magnet DC Motor Efficiency Tests, UVA-REC, pp.105-82, 1982.
    [9]邱毓賢, 數位式行動輔具控制器設計及測試, 國立成功大學醫學工程研究所碩士論文, 1999.
    [10]游許銓, 電動輪椅動力驅動之解析模型, 國立成功大學醫學工
    程研究所碩士論文, 2001.
    [11]J.G. Thacker , Understanding the Technology When Selecting
    Wheelchairs, RESNA PRESS, UVA, 1994.
    [12]Yasuhiko Dote, Servo Motor and Motion Control Using Digital
    Signal Processors, Prentice Hall, 1990.
    [13]許景淵, 電子差速式電動輪椅動力模組, 國立台灣大學機械工
    程研究所碩士論文, 1997.
    [14]張簡嘉壬, 數位式電動輪椅/代步車控制器系統之設計發展, 國
    立成功大學醫學工程研究所碩士論文, 2002.
    [15]W.H. Crouse, D.L. Anglin著, 劉崇富譯, 汽車學, 麥格羅.希爾,
    1997.
    [16]江信毅, 電子式差速器之控制器設計與製作, 國立台灣大學機
    械工程研究所碩士論文, 1996.
    [17]林昆民, 電動車整體性能之電腦輔助設計模擬分析, 國立清華
    大學動力機械工程研究所碩士論文, 2000.
    [18]陳連春譯, 感測器使用訣竅, 建興出版社, 1996.
    [19]見成尚志, 永守重信, 孫清華譯, 最新無刷直流馬達, 全華科技
    圖書股份有限公司, 2002.
    [20]R.C. Hibbeler, Machanics of Materials, Prentice Hall, 1997.

    下載圖示 校內:立即公開
    校外:2003-07-18公開
    QR CODE