簡易檢索 / 詳目顯示

研究生: 鄭劭傑
Cheng, Shao-Chieh
論文名稱: 非定常時間序列於模態參數識別之應用
Modal-Parameter Identification Using Non-Stationary Time Series
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 53
中文關鍵詞: 自迴歸移動平均模型時間序列模態參數識別
外文關鍵詞: ARMA, time series, modal-parameter identification
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討非定常時間序列於非定常環境振動模態參數識別之應用。原時間序列法使用定常ARMA模型來描寫定常響應訊號,並提取模型自迴歸項參數,進而獲取系統之模態參數。然而面對更貼近真實環境的非定常訊號,則通常使用在定常訊號的時間序列便不再適用,因此本文分別以振幅曲線擬合及引入基底函數的方式,加以描述非定常訊號其振幅非定常的因素,建構非定常時間序列模型,使其能良好描寫非定常訊號,並應用於非定常白訊激勵之結構系統模態參數識別,進而得到系統之模態參數。經由數值模擬結果顯示,在非定常環境振動情況下本文所提之分析法可得良好的模態參數識別結果。

    This thesis studies Non-Stationary Time Series for the application of modal-parameter identification from non-stationary ambient vibration data. The original Time Series uses ARMA (Autoregressive Moving-Average) model, which contains autoregressive part and moving average part, to reconstruct the stationary ambient vibration data, and obtains modal parameter with autoregressive part of ARMA model. However, the original time series method is not applicable to non-stationary signal which is closer to natural environment. So we propose two ways to build a non-stationary time series model—by curve-fitting of amplitude and by introducing the basis function. We use this model to describe the non-stationary amplitude of data and we also apply it to modal-parameter identification from non-stationary ambient vibration data. Through numerical simulation, applicability and effectiveness of the proposed method of modal parameter identification from non-stationary ambient vibration data is demonstrated.

    中文摘要……………………………………………………………… Ⅰ 英文摘要……………………………………………………………… Ⅱ 致謝…………………………………………………………………… Ⅲ 目錄…………………………………………………………………… Ⅳ 表目錄………………………………………………………………… V 圖目錄………………………………………………………………… VI 第一章 緒論……………………………………………………………1 1-1 引言……………………………………………………………1 1-2 系統識別與模態分析…………………………………………2 1-3 文獻回顧………………………………………………………4 1-4 研究目的………………………………………………………7 1-5 論文架構………………………………………………………8 第二章 線性系統的隨機反應與時間序列……………………………9 2-1 隨機過程簡介…………………………………………………9 2-2 結構系統之自由振動分析……………………………………12 2-3 時間序列模型…………………………………………………14 2-4 ARMA模型與振動方程的關連性………………………………16 第三章 自迴歸移動平均模型之參數估計……………………………19 3-1 非線性最小二乘法於ARMA模之參數估計……………………19 3-2 Yule-Walker法於ARMA模型之參數估計……………………22 3-3 三段式最小二乘法於ARMA模型之參數估計…………………25 第四章 非定常時間序列參數識別理論………………………………28 4-1 引言……………………………………………………………28 4-2 使用響應均方根函數建構非定常時間序列…………………29 4-3 使用基底函數建構非定常時間序列…………………………30 第五章 數值模擬………………………………………………………32 5-1 引言……………………………………………………………32 5-2 隨機外力過程的模擬…………………………………………32 5-3 鏈模型之模態參數識別………………………………………34 第六章 結論……………………………………………………………37 參考文獻 ………………………………………………………………40

    [1]Beck, J. L., “Determining Models of Structures from Earthquake Records”, Report No. EERL 78-01, California Institute of Technology, Pasadena, 1978.
    [2]Bendat, J. S. and Piersol, A. G., Random Data: Analysis and Measurement Procedures. John Wiley, New York, 2000.
    [3]Carne, T. G., Lauffer, J. P., Gomez, A. J. and Benjannet, H. “ Modal Testing an Immense Flexible Structure Using Natural and Artificial Excitation”, The International Journal of Analytical and Experimental Modal Analysis, The Society of Experimental Mechanics, Oct. 1988, pp. 117-122.
    [4]Chen, C. T., Linear System Theory and Design. Holt, Rienhart, and Winston, Inc., New York, 1970.
    [5]Chiang, D.Y. and Cheng, M. S., “Model Parameter Identification from Ambient Response”, AIAA Journal, Vol. 37, 1999, pp. 513-515.
    [6]Deblauwe, R., Brown, D. L., and Allemang, R. J., “The Polyreference Time Domain Technique”, Proc. 5th Int. Modal Analysis Conf., Orlando, Fl.,1987, pp. 832-845.
    [7]Ewins, D. J., Modal Testing: Theory and Practice. Research Studies Press, 1984.
    [8]Fouskitis G. N. and Fassois S. D., “Functional series TARMA modellinf and simulation of earthquake ground motion ”, Earthquake Engineering and Structural Dynamics, 2002, pp. 399-420
    [9]George, E. P. Box and Gwilym M. Jenkins, Time Series Analysis: Forecasting and Control. 1994, pp. 78-86.
    [10]Ho, B. L. and Kalman, R. E., “Effective Construction of Linear State-Variable Models from Input/Output Data”, Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, 1965, pp. 449-459
    [11]Ibrahim, S. R. and Mikulcik, E. C., “A Method for the Direct Identification of Vibration Parameters from Free Response”, Shock and Vibration Bulletin, Vol. 47, Pt. 4, Sept. 1977, pp. 183-198.
    [12]Ibrahim, S. R. and Mikulcik, E. C., “The Experimental Determination of Vibration Parameters from Time Responses ”, Shock and Vibration Bulletin, Vol. 46, Pt. 5, Aug. 1976, pp. 183-198.
    [13]James, G. H., Carne. T. G. and Lauffer, J. P., “The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Yurbines.” SAND92-1666. UC-261, Sandia National Aboratories, 1993.
    [14]Juang, J. N., Applied System Identification. Prentice-Hall, Inc, 1994.
    [15]Juang, J. N., Cooper, J. E. and Wright J. R., “An Eigensystem Realization Algorithm using Data Correlations (ERA/DC) for Modal Parameter Identification”, Control-Theory and Advanced Technology, Vol. 4, No. 1, pp. 5-14, March, 1988.
    [16]Juang, J. N. and Pappa, R. S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction”, Journal of Guidance, Control and Dynamics, Vol. 8, No. 5, Sept.-Oct. 1985, pp. 620-627.
    [17]Juang, J. N. and Pappa, R. S., “Effect of Noise on Modal Parameters Identified by the Eigensystem Realization Algorithm”, Journal of Guidance, Control and Dynamics, Vol. 9, No. 3, May-June 1986, pp. 294-303.
    [18]Kirshenboim, J., “Real vs. Complex Mode Shapes”, Proceeding of 5th International Modal Analysis Conference. London, England, 1987, pp. 1594-1599.
    [19]Newland, D. E., An Introduction to Random Vibrations and Spectral Analysis. 1975.
    [20]Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis Via State Space,” Transactions ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 107, 1985, pp. 132-137.
    [21]Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis, Part I: Theory”, Journal of Sound and Vibration, Vol. 122, No. 3, 1988, pp. 413-422.
    [22]Pandit, S. M. and Wu, S. M., Time Series and System Analysis with Applications. John Wiley & Sons, Inc., New York, 1983.
    [23]Pappa, R. S. and Ibrahim, S. R., “A Parametric Study of Ibrahim Time Domain Modal Analysis”, Shock and Vibration Bulletin, Vol. 51, Part. 3, 1981, pp. 43-72.
    [24]Shen, F., Zheng, M., Feng Shi, D. and Xu, F., “Using The Cross-correlation Technique To Extract Modal Parameters On Response-only Data” Journal of Sound and Vibration, vol. 259, No. 5, 2003, pp. 1163-1179.
    [25]Shinozuka, M., “Simulation of Multivariate and Multidimensional Random Processes”, Journal of the Acoustical Society of America, Vol. 49, No. 1, 1971, pp. 357-367.
    [26]Van Overschee, P. and De Moor, B., “Subspace Algorithms for the Stochastic Identification Problem”, Automatica, Vol. 29, No. 3, 1993, pp. 649-660.
    [27]Vold, H. and Rocklin, G. F., “The Numerical Implementation of a Multi-Input Modal Estimation Method for Mini- Computers”, International Modal Analysis Conference Proceedings, Nov. 1982.
    [28]Zeiger, H. P. and McEwen, A. J., “Approximate Linear Realizations of Given Dimension Via Ho’s Algorithm”, IEEE Transactions on Automatic Control, Vol. AC-19, No. 2, April 1974, pp. 153-153.
    [29]林章生, ”相關函數法於非定常環境振動之模態參數識別研究, ” 碩士論文,國立成功大學航空太空工程研究所,2004.
    [30]鄭銘勢, “時域模態參數識別法之應用,”碩士論文, 國立成功大學航空太空工程學研究所, 1997.
    [31]傅志方, 振動模態分析與參數辨識,機械工業出版社. 1989

    下載圖示 校內:立即公開
    校外:2007-07-10公開
    QR CODE