| 研究生: |
陳彥文 Chen, Yen-Wen |
|---|---|
| 論文名稱: |
Copper-Silicate孔洞複合性材料之合成與應用 Synthesis and Application of Copper-Silicate Mesoporous Material |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 氧化銅 、氧化矽 、重組 |
| 外文關鍵詞: | copper-silicate, silica |
| 相關次數: | 點閱:58 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文主旨在於,藉由改進中孔洞氧化矽材料的合成配方,找尋簡單且快速的方式使金屬氧化物進入氧化矽的骨架內,以合成metal-silicate孔洞性複合材料,並對其應用進行探討。研究中發現此類型之複合材料對於催化觸媒、工業之有毒氣體吸附以及含氯有機物的降解方面有顯著的效果。本論文研究重點著重於各類型的metal-silicate複合材料之合成條件,以及材料表面積、孔洞大小、金屬氧化物嵌入量等控制。主要合成方式有三 :
(1) 異相成核法
本實驗利用工業級之界面活性劑;Polyethylene Glycol(以下簡稱PEG)可以成功地合成出中孔洞氧化矽,藉由調整水熱時的pH值可順利地將PEG從中孔洞氧化矽球中移除並同時達到擴大孔洞之目的。若在水熱同時,加入金屬前驅物,藉由調整pH值,更可以將金屬氧化物嵌入中孔洞氧化矽的骨架之中。利用此方法可快速地合成metal-silicate材料。而此材料在改變鹼來源及合成水量後,更可以得到具有高分散性金屬氧化物的metal-silicate中孔洞材料,且此材料在金屬與氧化矽莫耳數比達4比10之時,表面積仍可達430 m2/g之水準。
(2) 螯合法
除了以氧化矽孔洞材料做為擔載體製備孔洞材料外,結合模板法和溶膠-凝膠法亦可製備出具有高分散性金屬氧化物之metal-silicate孔洞複合性材料。根據生物成礦的原理,利用表面具有與無機物結合力強之官能基以及可引導無機物成礦之表面的有機模板,即可與無機物作用,進而拓印出其結構和尺度。本實驗以動物性明膠-gelatin做為高分子模板,因gelatin具有大量的-H、-NH2及C=O 官能基,在適當的pH值底下,能分別與氧化矽及金屬離子生成強的氫鍵作用力以及嵌合力。並且,矽酸鈉於特定pH值下,亦能與金屬離子產生螯合作用,利用螯合作用以及矽酸鈉自身縮合反應可在特定的pH值底下形成metal-silicate膠體粒子,在形成膠體粒子後引入gelatin,利用它與metal-silicate膠體粒子的作用力即可生成metal-silicate孔洞材料,此材料可經由水熱處理控制其孔洞結構,配合水熱反應及溶液pH值的調控,產物的孔洞性質亦可達到高調控度。材料的高調控度為實際應用所需,故此合成法著重於合成時的pH值選定。此外,因此合成法進行金屬嵌入的時機為silicate進行縮合聚合時,金屬會因為螯合效應而被均勻的分散在silica之內, 最終形成具高分散性金屬氧化物的metal-silicate複合材料,而能提供更多的活化位置。
(3) 利用晶格不均化製備中孔洞材料
以模板法製備孔洞材料,其製成容易且再現性高,發展之歷史相當悠久,不論是軟式模板亦或是硬式模板,其生成原理皆是利用模板與欲生成物有強作用力之特性,將無機物生成至模板上,進而生成與模板形狀相似之產物。本研究亦是利用相似的概念,但機構上卻有相當的差異性。
在金屬氧化物擔載的實驗中,因調整Cu/Si比例,意外地得到copper-silicate管狀材料,其表面積介於300 m2g-1~450 m2g-1之間,因而發現到氧化矽材料和金屬氧化物之間,在適當的反應條件下可進行重組再結合,使之轉變成新的形態和結構。
對於此孔洞材料合成法的研究,首先著手於製備出Cu(OH)2的層狀化合物,接著再加入氧化矽前驅物(例如;矽酸鈉、孔洞氧化矽、氧化矽微粒)後調整反應系統之pH值,在適當的水熱溫度下,讓矽酸塩與層狀Cu(OH)2結合,由於結合後兩層的組成和晶格大小皆有所不同,因而產生捲曲力,在適當的溫度下,提供足夠的能量,即可生成管狀的copper-silicate孔洞材料。
自然界中大部分的禾本科植物內都含有silica用以增強結構強度,以便直立生長競爭陽光,而稻草便是台灣常見的禾本科植物。將稻殼引入合成,利用水熱時的溶解再結晶反應將稻殼內的SiO2溶出與Cu(OH)2反應,而反應所得到的結果與使用中孔洞氧化矽以及市售的fumed silica所得結果,在外觀上幾近一致,並且能達到400 m2/g以上的高表面積。
更進一步地,利用聯電公司在化學研磨製程中產生的銅離子廢液,取代原本製成Cu(OH)2所需之Cu(NO3)2成為新的金屬前驅物。利用此廢液結合稻殼中的silica進行水熱反應亦可得到高表面積的copper-silicate孔洞複合性材料,此材料於上述之催化、吸附反應,亦有良好之效果。
截至目前之成果發現,copper-silicate孔洞複合性材料對於進行碳-硫鍵之耦合反應(C-S coupling)之催化及有毒氣體(NH3、PH3)吸附皆有良好的效果。除此之外nickel-silicate、iron-silicate與copper-silicate也能夠在化學氣相沈積法中做為觸媒,進而生長出奈米碳管,其中又以iron -Silicate的行為最為特別。
Abstract
Since the discovery of M41S mesoporous silicas by the researchers in Mobil Oil Company, the surfactant-templating method has been widely applied to synthesize the mesostructural materials of high-surface area, tunable pore size and large pore volume for the applications in adsorption, catalysis, enzyme-stabilization, and optical devices.
There are three synthetic route with the advantages of flexibility, simplicity and large-scale production are desired.
At first, we used mesoporous silica to be a supporter of metal oxide, and combining with heterogeneous nucleation to prepare the well-dispersed metal oxide on mesoporous silica sample. And then, we developed a convenient process combining a sol–gel method with chelating effect. The metal-silicate porous materials can be prepared in large scale and efficiently by this new method.
Finally, we provided a new non-templating method to prepare the copper-silicate mesostructural platelets with high surface area, large pore size and pore volume by hydrothermally treating the Cu(OH)2 precipitate in an alkaline silicate aqueous solution.
To achieve the idea of green chemistry, we prepare the copper-silicaate with the reject of agriculture and industry. There are around 15 weight-percent inorganic materials in rice husk that the most of the materials is silica. This agricultural waste can be used as a silica source for preparation of mesoporous materials. According to this idea, we provided a new synthetic procedure to synthesize mesostructural copper-silicate by adding NaOH(aq) to a solution of copper ion (copper nitrate, Cu-CMP) to form Cu(OH)2(s) precipitation, and then mixing it with the silica source (mesoporous silica, fumed silica and rice husk). After hydrothermal procedure, the mesostructural copper-silicate formed.
Actually, the copper-silicate of high surface area has well dispersed and accessible metal oxide active sites and thus can be used a potential catalyst and absorbent. The procedure is potential to be a standard synthesis which is eligible for the purpose of green chemistry, because of the row material from wastes instead of chemicals.
1. J. Pardillos, D. Brunel, B. Coq, P. Massiani, L. C. Demenorval and F. Figueras, J Am Chem Soc, 1990, 112, 1313-1318.
2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
3. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins and J. L. Schlenker, J Am Chem Soc, 1992, 114, 10834-10843.
4. M. H. Nilsen, E. Antonakou, A. Bouzga, A. Lappas, K. Mathisen and M. Stocker, Micropor Mesopor Mat, 2007, 105, 189-203.
5. E. Moretti, L. Storaro, A. Talon, R. Moreno-Tost, E. Rodriguez-Castellon, A. Jimenez-Lopez and M. Lenarda, Catal Lett, 2009, 129, 323-330.
6. V. Cauda, A. Schlossbauer, J. Kecht, A. Zurner and T. Bein, J Am Chem Soc, 2009, 131, 11361-11370.
7. M. J. Fuller and M. E. Warwick, J Catal, 1973, 29, 441-450.
8. F. Sala and F. Trifiro, J Catal, 1974, 34, 68-78.
9. S. Takenaka, A. Hirata, E. Tanabe, H. Matsune and M. Kishida, J Catal, 2010, 274, 228-238.
10. J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou and D. Y. Zhao, Angew Chem Int Edit, 2003, 42, 3146-3150.
11. A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 2003, 15, 1385-1393.
12. H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 2002, 49, 899-906.
13. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
14. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935.
15. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J Phys Chem B, 2002, 106, 2552-2558.
16. A. Bhaumik and S. Inagaki, J Am Chem Soc, 2001, 123, 691-696.
17. Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao and F. S. Xiao, Angew Chem Int Edit, 2001, 40, 1258-+.
18. A. Walcarius, M. Etienne and B. Lebeau, Chem Mater, 2003, 15, 2161-2173.
19. T. Yokoi, H. Yoshitake and T. Tatsumi, J Mater Chem, 2004, 14, 951-957.
20. J. N. Cha, T. J. Deming, D. E. Morse and G. D. Stucky, Abstr Pap Am Chem S, 2000, 219, U837-U837.
21. Z. R. R. Tian, J. Liu, J. A. Voigt, B. McKenzie and H. F. Xu, Angew Chem Int Edit, 2003, 42, 414-+.
22. F. Noll, M. Sumper and N. Hampp, Nano Lett, 2002, 2, 91-95.
23. Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv Mater, 2000, 12, 206-+.
24. P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457.
25. C. E. Fowler, D. Khushalani and S. Mann, Chem Commun, 2001, 2028-2029.
26. Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chem Mater, 1997, 9, 14-&.
27. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223-226.
28. C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv Mater, 2001, 13, 649-652.
29. S. Mann, Angew Chem Int Edit, 2000, 39, 3393-3406.
30. N. Kroger, R. Deutzmann and M. Sumper, Science, 1999, 286, 1129-1132.
31. E. G. Vrieling, T. P. M. Beelen, R. A. van Santen and W. W. C. Gieskes, Angew Chem Int Edit, 2002, 41, 1543-1546.
32. C. Fox, Cosmet Toiletries, 1984, 99, 28-31.
33. [Anon], Nature, 1970, 228, 321-&.
34. B. Sarkar and P. Alexandridis, J Phys Chem B, 2010, 114, 4485-4494.
35. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
36. D. Y. C. Chan, D. J. Mitchell, B. W. Ninham and B. A. Pailthorpe, J Chem Soc Farad T 2, 1980, 76, 776-784.
37. H. Y. Jin, L. J. Wang and N. C. Bing, Mater Lett, 2011, 65, 233-235.
38. H. Y. Fan, S. Reed, T. Baer, R. Schunk, G. P. Lopez and C. J. Brinker, Micropor Mesopor Mat, 2001, 44, 625-637.
39. C. J. Brinker and G. W. Scherer, J Non-Cryst Solids, 1985, 70, 301-322.
40. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Accounts Chem Res, 1998, 31, 485-493.
41. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angewandte Chemie-International Edition in English, 1997, 36, 1001-1003.
42. R. Murugavel and H. W. Roesky, Angewandte Chemie-International Edition in English, 1997, 36, 477-479.
43. M. G. Clerici, G. Bellussi and U. Romano, J Catal, 1991, 129, 159-167.
44. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr Pap Am Chem S, 1993, 206, 57-Petr.
45. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor Mat, 1998, 25, 43-57.
46. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
47. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J Catal, 1994, 148, 569-574.
48. M. D. Alba, Z. H. Luan and J. Klinowski, J Phys Chem-Us, 1996, 100, 2178-2182.
49. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal Lett, 1996, 37, 113-120.
50. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem Mater, 2001, 13, 552-557.
51. D. R. Rolison, Science, 2003, 299, 1698-1701.
52. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor Mesopor Mat, 2008, 113, 562-574.
53. M. Plabst, L. B. McCusker and T. Bein, J Am Chem Soc, 2009, 131, 18112-18118.
54. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J Catal, 1989, 115, 301-309.
55. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J Phys Chem B, 2002, 106, 13287-13293.
56. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
57. L. M. Xiong, E. H. Sekiya, S. Wada and K. Saito, Acs Appl Mater Inter, 2009, 1, 2509-2518.
58. S. M. Chang, Y. Y. Hsu and T. S. Chan, J Phys Chem C, 2011, 115, 2005-2013.
59. W. T. Lu, A. K. Singh, S. A. Khan, D. Senapati, H. T. Yu and P. C. Ray, J Am Chem Soc, 2010, 132, 18103-18114.
60. F. L. Chen, I. W. Sun, H. P. Wang and C. H. Huang, J Nanomater, 2009, -.
61. J. A. Melero, G. Calleja, F. Martinez and R. Molina, Catal Commun, 2006, 7, 478-483.
62. Y. Liu and M. Liu, Adv Funct Mater, 2005, 15, 57-62.
63. D. J. Maxwell, J. R. Taylor and S. M. Nie, J Am Chem Soc, 2002, 124, 9606-9612.
64. Z. Y. Zhong, V. Ng, J. Z. Luo, S. P. Teh, J. Teo and A. Gedanken, Langmuir, 2007, 23, 5971-5977.
65. I. J. Drake, K. L. Fujdala, A. T. Bell and T. D. Tilley, J Catal, 2005, 230, 14-27.
66. P. W. Schindler, B. Furst, R. Dick and P. U. Wolf, J Colloid Interf Sci, 1976, 55, 469-475.
67. T. W. Healy, R. O. James and R. Cooper, Advances in Chemistry Series, 1968, 62-&.
68. R. L. Burwell, R. G. Pearson, G. L. Haller, P. B. Tjok and S. P. Chock, Inorg Chem, 1965, 4, 1123-&.
69. D. N. Furlong, Adv Chem Ser, 1994, 234, 535-559.
70. D. Varisli, T. Dogu and G. Dogu, Ind Eng Chem Res, 2008, 47, 4071-4076.
71. L. Ma and D. H. He, Top Catal, 2009, 52, 834-844.
72. S. S. Dipti, U. C. Chung, J. P. Kim and W. S. Chung, Phys Status Solidi A, 2007, 204, 4174-4177.
73. D. Alloyeau, G. Prevot, Y. Le Bouar, T. Oikawa, C. Langlois, A. Loiseau and C. Ricolleau, Phys Rev Lett, 2010, 105, -.
74. W. Y. Yang, F. M. Gao, G. D. Wei and L. A. An, Cryst Growth Des, 2010, 10, 29-31.
75. L. Pauling, Pord. Nat. Acad. Sci. U.S.A, 1930, 16, 578.
76. H. Qin, N. Shaji, N. E. Merrill, H. S. Kim, R. C. Toonen, R. H. Blick, M. M. Roberts, D. E. Savage, M. G. Lagally and G. Celler, New J Phys, 2005, 7, -.
77. M. R. Yu, Y. Huang, J. Ballweg, H. Shin, M. H. Huang, D. E. Savage, M. G. Lagally, E. W. Dent, R. H. Blick and J. C. Williams, Acs Nano, 2011, 5, 2447-2457.
78. L. M. Xiong, E. H. Sekiya, S. Wada and K. Saito, Acs Appl Mater Inter, 2009, 1, 2509-2518.
79. S. Karagoz, T. Tay and S. Ucar, J Hazard Mater, 2009, 165, 481-485.
80. A. B. Fuertes and D. M. Nevskaia, J Mater Chem, 2003, 13, 1843-1846.
81. F. B. Su, J. H. Zeng, X. Y. Bao, Y. S. Yu, J. Y. Lee and X. S. Zhao, Chem Mater, 2005, 17, 3960-3967.
82. P. Ndungu, Z. G. Godongwana, L. F. Petrik, A. Nechaev, S. Liao and V. Linkov, Micropor Mesopor Mat, 2008, 116, 593-600.
83. W. C. Li, H. L. Bai, J. N. Hsu, S. N. Li and C. C. Chen, Ind Eng Chem Res, 2008, 47, 1501-1505.
84. H. H. Yi, Q. F. Yu, X. L. Tang, P. Ning, L. P. Yang, Z. Q. Ye and J. H. Song, Ind Eng Chem Res, 2011, 50, 3960-3965.
85. S. M. Chang, Y. Y. Hsu and T. S. Chan, J Phys Chem C, 2011, 115, 2005-2013.
86. S. L. Buchwald and C. Bolm, Angew Chem Int Edit, 2009, 48, 5586-5587.
87. P. F. Larsson, A. Correa, M. Carril, P. O. Norrby and C. Bolm, Angew Chem Int Edit, 2009, 48, 5691-5693.
88. S. Ranjit, Z. Y. Duan, P. F. Zhang and X. G. Liu, Org Lett, 2010, 12, 4134-4136.
89. S. Jammi, S. Sakthivel, L. Rout, T. Mukherjee, S. Mandal, R. Mitra, P. Saha and T. Punniyamurthy, J Org Chem, 2009, 74, 1971-1976.
90. C. K. Chen, Y. W. Chen, C. H. Lin, H. P. Lin and C. F. Lee, Chem Commun, 2010, 46, 282-284.