簡易檢索 / 詳目顯示

研究生: 李培瑋
Lee, Pei-Wei
論文名稱: 利用同步輻射光電子能譜探測PZT/LSMO鐵電異質接面之電子結構
Probing Electron Structure of Ferroelectric PZT/LSMO Heterojunction with Synchrotron Radiation Photoemission Spectroscopy
指導教授: 吳忠霖
Wu, Chung-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 60
中文關鍵詞: 異質接面電子結構同步輻射光光電子能譜
外文關鍵詞: heterojunction, electric structure, synchrotron radiation, photoemission spectroscopy
相關次數: 點閱:78下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究具自發極化場的鐵電薄膜對接面能帶產生之影響。透過即時量測隨時變光電子能譜,探測 PZT/LSMO(PbZr0.2Ti0.8O3/La0.7Sr0.3MnO3)異質接面結構。我們證明了界面電荷將導致LSMO界面能帶的彎曲,並可藉由PZT自發極化場方向來調控LSMO界面能帶的彎曲方向。高亮度的同步輻射光可在PZT薄膜中產生的大量光致載子,此光致載子會屏蔽PZT的自發極化場,並調變界面能帶結構。此可藉由觀察來自下層LSMO光電子束縛能隨時間偏移之動態行為。此外,透過 LSMO光電子束縛能隨時間偏移之動態行為,可以得知超薄PZT薄膜的電導率與自發極化場的值。

    The electrostatic driven interface band structure between a top ferroelectric-patterned Pb(Zr0.2Ti0.8)O3 (PZT) ultrathin film and a bottom La0.7Sr0.3MnO3 (LSMO) electrode was in situ investigated using a continuous synchrotron radiation photoelectron spectroscopy (SR-PES) measurement. We demonstrate the interface electrostatics affected band bending structure on the LSMO side is reversible by switching the polarization of the PZT side, and can be modulated by SR induced photoelectric effect. Time-dependent polarization screening induced by the photogenerated carriers in top PZT layer was investigated by monitoring the core-level shifting of buried LSMO layer under continuous synchrotron radiation illumination. The dynamic characterization of the buried layer core-level shifting could be a novel method to probe the electric conduction and ferroelectric polarization in ultra-thin PZT film.

    第一章 研究背景導論 1 1.1 前言 1 1.2 異質接面能帶結構的探測 2 1.2.1 簡介 2 1.2.2 探測接面能帶電子結構 ─ 光電子能譜術 4 1.3 PZT材料回顧與電特性的量測 6 1.3.1 PZT、LSMO特性簡介 6 1.3.2 PZT的電導 7 1.3.3 PZT的電滯曲線與自發極化場量測 8 1.4 界面電荷(InterfaceCharges)對界面能帶的影響 12 1.5 小結 15 第二章 實驗方式原理 16 2.1 壓電力顯微鏡(Piezoresponse Force Microscope) 16 2.2 光電子能譜學(PhotoemissionSpectroscopy;PES) 20 2.2.1 光電子能譜學簡介與原理 20 2.2.2 同步輻射光源(Synchrotron-Radiation;SR) 23 2.2.3 同步輻射光致光電子能譜(SR-PES) 28 第三章 實驗設備與方法 30 3.1 樣品製備 30 3.2 實驗流程 34 第四章 實驗結果與討論 36 4.1 PZT/LSMO異質接面隨時變光電子能譜 36 4.2 異質接面電容模型的建立與光致載子的屏蔽效應 38 4.3 RC充放電電路 40 4.4 弛豫時間(Relaxation time) 44 4.5 超薄PZT薄膜的電導率與自發極化場的大小 46 4.6 PZT/LSMO價帶不連續值(Valence Band Offset) 50 4.7 PZT/LSMO異質接面的能帶圖(Band Diagrams) 52 第五章 總結 53 附錄 55 附錄A 金屬鉛(Lead)光電子能譜圖 55 附錄B 金屬鍶(Strontium)光電子能譜圖 57 參考文獻 59

    [1] J. F. Scott, Science 315, 954 (2007)
    [2] S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, Science 276, 238 (1997)
    [3] S. Y. Yang et al., Appl. Phys. Lett. 95, 062909 (2009)
    [4] Meng Qin, Kui Yao, and Yung C. Liang, Appl. Phys. Lett. 95, 022912 (2009)
    [5] S. Y. Yang et al., Nature Nanotech. 5, 143–147 (2010).
    [6] C.-L. Wu, H.-M. Lee et al., Appl. Phys. Lett. 92, 162106 (2008)
    [7] A. Rizzi, R. Lantier et al., J. Vacuum Sci. & Technol. B 17,1674−1681 (1999)
    [8] J. R. Waldrop and R. W. Grant, Appl. Phys. Lett. 68, 2879−2881 (1996)
    [9] G. Martin, A. Botchkarev et al., Appl. Phys. Lett. 68, 2541−2543 (1996)
    [10] S.-H. Wei and A. Zunger, Appl. Phys. Lett. 69, 2719−2721 (1996)
    [11] S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices (Wiley-Interscience, 2007)
    [12] H. Taguchi, D. Matsuda, and M. Nagao, J. Mater. Sci. Lett. 14, 12 (1995)
    [13] F. Wang, and S. Leppävuori, J. Appl. Phys. 82, 1293 (1997)
    [14] B.A. Boukamp et al., Solid State Ionics 170, 239 (2004)
    [15] Chun-Lin Jia, Valanoor Nagarajan et al, Nature Materials 6, 64 - 69 (2007)
    [16] C.-L. Wu et al., Appl. Phys. Lett. 91, 042112 (2007).
    [17] Roger Proksch and Sergei Kalinin, Piezoresponse Force Microscopy with Asylum Research AFMs, Asylum Research
    [18] H. Hertz, Ann. Phys. 31, 983 (1887)
    [19] A. Einstein, Ann. Phys. 17, 132 (1905)
    [20] http://www.nsrrc.org.tw/chinese/index.aspx
    [21] 汪建民, 材料分析(中國材料科學學會, 台灣, 1989)
    [22] J.J. Yeh, “Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters”, Gordon and Breach Science Publishers (1993)
    [23] S.M.A.R.T. Lab, Department of Materials Science and Engineering of NCTU
    [24] Harris Benson, University Physics (Wiley, 1995)
    [25] K. Yoshimatsu, R. Yasuhara, H. Kumigashira, and M. Oshima, Phys. Rev. Lett. 101, 026802 (2008)
    [26] Jyrki Lappalainen and Vilho Lantto, Phys. Scr. T79, 220 (1999)
    [27] R. Ramesh, Thin Film Ferroelectric Materials and Devices (Kluwer Academic Publishers, Boston, 1997), p. 203.
    [28] S. H. Kim, Y. S. Choi, C. E. Kim, and D. Y. Yang, Thin Solid Films 325, 72–78 (1998)
    [29] A. Pimenov et al., Phys. Rev. B 59,12419
    [30] X. Hong, A. Posadas, and C. H. Ahn, Appl. Phys. Lett. 86, 142501 (2005).
    [31] X. Hong et al, Phys. Rev. B 68, 134415 (2003)
    [32] Kun Zhao et al., Appl. Phys. Lett. 88, 141914 (2006)
    [33] I. Boerasu et al., J. Appl. Phys. 93, 4776 (2003)
    [34] Jill Chastain, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corportion & Physical Electronics Division, Minnesota, 1992)

    下載圖示 校內:2013-07-01公開
    校外:2015-07-01公開
    QR CODE