| 研究生: |
陳睿邦 Chen, Ruei-Bang |
|---|---|
| 論文名稱: |
閉環式同軸井配合數值模型探討知本地區地熱交換行為 Numerical Modeling of Geothermal Energy Production Using a Closed-loop Heat Exchange Method In Zhiben Area |
| 指導教授: |
李振誥
Lee, Cheng-Haw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | TOUGH2 、知本地區 、熱交換井 、閉環式同軸熱交換系統 |
| 外文關鍵詞: | TOUGH2, Zhi-ben area, heat well, closed-loop coaxial well |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣蘊藏豐富的地熱資源,地熱資源在人為大量利用下溫度場變動趨勢是影響地熱資源能否永續利用之關鍵。本研究首先蒐集地熱交換井相關文獻進行研究方式之選定,以TOUGH2數值模型建立同軸熱交換井模擬水流與熱交換之情形,並根據所蒐集同軸井之Bu等人(2012)文獻進行模型建置與驗證,並對同軸井模型分別以單井與井群模式進行敏感性分析,以地質參數改變探討單井熱交換對溫度場之影響,配合同軸井數量與井間不同距離,分析同軸井群對溫度場之分布變化與周圍溫度下降量進行分析討論。最後,本研究選擇知本地熱區作為研究區域,以數值模型進行知本地熱區熱交換情形之預估,根據蒐集之地球物理探測成果,分析研究區地質構造組成以及探測井溫度剖面資料,進行知本研究區模型溫度率定,利用模擬結果推估研究區熱潛能與溫度場分布情形。
上述模型驗證結果顯示本研究與Tian等人模型在溫度下降趨勢與熱交換之行為相符,並將該模型進行敏感度分析,對地質參數、注入速率、管之熱傳導係數、單井井群以及井間距進行分析討論,模擬結果指出:(1)滲透係數與熱傳導係數之地質參數改變對於同軸井熱交換情型具顯著之影響、(2)注入速率與管之熱傳導係數皆會影響井之熱交換與出口溫度、(3)同軸井周圍溫度隨著與同軸井距離增加溫度下降漸減,(4)於本研究案例中顯示井距大於40公尺之情況同軸井間無顯著之影響。由本研究假設中,顯示知本研究區熱流由破碎帶向上流動,總帶入熱焓量為每年3.5×1014焦耳主要地熱資源於深度400公尺以下出現高溫158℃。本文以坡度與地質構造進行不同數量之同軸井佈設情境分析,結果顯示溫度降幅主要於同軸井周圍,且對於整體溫度場變化無顯著影響。
This study firstly collects the relevant research methods of geothermal exchange wells, and then establishes the simulation model of water flow and heat exchange in the coaxial heat exchange well with the TOUGH2 numerical model. Furthermore, we also verified the established model with the model proposed by Bu’s model. The sensitivity analysis has proposed to observe the temperature effect of various rock mass parameters and injected flow behaviors for single well and different number of group wells against the distance of wells. Finally, bases on the literature of geological structure and temperature in Zhiben area, numerical modeling to realize the heat transmission and well production was performed The simulation results indicate that: (1) the geological parameters of the permeability coefficient and the heat transfer coefficient change for the coaxial The well heat exchange type has a significant influence. (2) Wellcharacterictics of the heat transfer coefficient in the casing and insulation effect the temperature change. (3) The temperature around the coaxial well decreases with the increase of the distance from the coaxial well, and there is no significant influence between the coaxial wells when the well spacing is greater than 40 meters. (4) The temperature decrease with inject flow rate increasing.
The heat exchange situation in Zhiben area showed that the heat flow flows upward from the sandstone of the underground section, and the total amount of hot heat is 3.5×1014 joules per year. The main geothermal resources are 158°C at 400 meters underground and 500 meters. In this paper, the situation analysis of different number of coaxial wells is carried out with slope and geological structure. The results show that the temperature drop is mainly around the coaxial well and has no significant effect on the overall temperature field change.
1. Adrian, B., 1993, “Heat transfer”, Josh Wiley & Sons Inc. ,New York.
2. Axelsson, G., Flovenza, O. G., Hauksdottira, S. Hjartarsona, A. and Liub, J. (2001) “Analysis of tracer test data, and injection-induced cooling, in the Laugaland geothermal field, N-Iceland” Geothermics 30, pp.697-725.
3. Barbier, E., 2002, “Geothermal energy technology and current status: an overview.”, Renewable and Sustainable Energy Reviews, vol. 6, issues 1-2, pp. 3-65.
4. Barker, B.J., Gulati, M.S. ,. Bryan, K M.A., Riedel, L., 1991, “GEYSERS RESERVOIR PERFORMAN”, Geothermal Resources Council, Monograph on The Geysers Geothermal Field, Special Report No. 17.
5. Bear, J. ,1972,”Dynamics of fluid in porous media” , America Elseriver Pub. Co. ,New York.
6. Bertani, R, 2010, “Geothermal power generation in the World 2005-2010 update report. In: Proceedings World Geothermal Congress 2010”, Bali, Indonesia,April , pp.25-30.
7. Björnsson, G., Axelsson, G. and Flóvenz, Ó.G., 1994, “Feasibility study for the Thelamörk lowtemperature system in N-Iceland”, Proceeding 19th Workshop on Geothermal Reservoir Engineering,
8. Brauner, E. and Carlson D. C. ,2003, “Santa Rosa Geysers Recharge Project GEO-98-001”, Final Report to California Energy Commission.
9. Bu, X. , Ma W. and Li H. , 2012, “Geothermal energy production utilizing abandoned oil and gas wells.” Renewable Energy , 41, pp.80-85.
10. Bu, X.B., Tan, Y.F., Li, B.X., 2009, “Heat and mass transfer and creep in underground oil storage with cavern.” Journal of Xi’an Jiao Tong University , 2009-11.
11. Bujakowski, W., Barbacki, A., Miecznik, M., Pajak, L., Skrzypczak, R., Sowizdzat, A.,2015, “Modelling geothermal and operating parameters of EGS installations in the lower triassic sedimentary formations of the central Poland area”, Renewable energy, vol.80, pp. 441-453
12. Culati, M.S., Lipman, S.C. and Slrobel, C.J., 1978. “Tritium tracer survey at The Geysers, Geothermal Resources Council, Transac tions”, vol.2, p. 237.
13. Davis, A.P., Michaelides, E.E., 2009, “Geothermal power production from abandoned oil wells, Energy”, Vol. 34, pp.866-872.
14. Domenico, P. A., and Schwartz, F. W.,1990, “Physical and chemical hydrogeology, Wiley”, New York
15. Edwards, A. L. ,1972,”TRUMP : A computer program for transient and steady state temperature distributions in multidimensional systems.”, Natinal Technival Information Service, National Bureau of Standards, Springfield, VA.
16. Faulder, D.D, 1992, “Model study of historical injection in the southeast Geysers, Conference: 17. workshop on geothermal reservoir engineering, Stanford”, CA (United States), 29-31 Jan 1992
17. Fournier R. O. and Truesdell A. H. ,1973, “An empirical Na-K-Ca geothermometer for natural waters”, Geochimica et Cosmochimica Acta ,vol. 37, issue 5, pp.1255-1275
18. Fournier R. O. and Truesdell A. H. ,1974a, “Estimation of temperatures and fraction of hot water mixed with cold water”, Jour of Res. U.S. Geol. Survey,2, pp 263-270..
19. Fournier, R. O., and Truesdell, A. H., 1974b, “Geochemical indicators of subsurface temperature Part 2, Estimation of temperature of fraction of hot water mixed with cold water: U.S. Geol.”, Survey Jour. Research, vol. 2, p. 263-270.
20. Frind E. O., 1982, “Simulation of long-term transient density-dependent transport in groundwater.”, Adv. Water Resources, vol. 5, issue 2, pp.73-88
21. Gallup D.L., 2009, “Production engineering in geothermal technology: a review.”, Geothermics, vol. 38, issue 3, pp.326-334.
22. Gopi, N. , Shook, G. M. and Axelsson G., 2005, “Tracer test analysis for characterization of laugaland geothermal field”, Geothermal Reservoir Engineering.
23. Goyal, K. P. and Box, W. T. Jr., 1995, “Injection recovery based on production data in unit 13 and unit 16 areas of the Geysers field”, Geothermics, vol. 24, issue 2, pp.167-186.
24. Heller, K.,Teodoriu, C.,Falcone G.,2014, “A New Deep Geothermal Concept Based on the Geyser Principle”, Thirty-Ninth Workshop on Geothermal Reservoir Engineering
25. Hsiao, P. T. and Chiang, S. C., 1979, “Geology and geothermal system of the Chingshui-Tuchang geothermal area, Ilan, Taiwan. “, Petroleum Geology of Taiwan, No.16, pp.205-213.
26. Hulya Sarak, Mustafa Onur, and Abdurrahman Satman, 2005, “Lumped-parameter models for low-temperature geothermal fields and their application”, Geothermics , Vol. 34, pp728–755.
27. Kana, J. D. , Djongyang, N., Raïdandi, D., Nouck, P. N. and Dadjé, N., 2015, “A review of geophysical methods for geothermal exploration”, Renewable and Sustainable Energy Reviews, Vol. 44 , pp. 87–95.
28. Kim, E.J., Roux, J.J., Rusaouen, G., Kuznik, F., 2010, “Numerical modeling of geothermal vertical heat exchangers for the short time analysis using the state model size reduction technique.” Applied Thermal Engineering , Vol. 30, issue 6-7, pp.706-714
29. Lai, C.H., Bodvarsson, G. S. and Truesdell, A.H., 1994,”Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs”, Geothermics, vol. 23, issue 1, pp.3-20
30. Lipman, S.C., Strobel, C.J. and Gulati, M.S., 1978,“Reservoir performance of The Geysers field, Geothermics, vol. 7, issue 2-4, pp.209-219
31. Llanos E. M.,Zarrouk S. J., Hogarth R. A.,2015, “Numerical model of the Habanero geothermal reservoir, Australia, Geothermics”, vol.53, pp. 308-319 .
32. Narasimhan, T. N. and Witherspoon, P. A.,1976, “An integrated finite difference method for analyzing fluid flow in porous media”, Water Resources Research, vol. 12, issue 1, pp.57-64.
33. O’Sullivan, M. J., Press, K. and Lippmann, M. J., 2001, “State of the art of geothermal reservoir simulation”, Geothermics, vol. 30, issue 4, pp.295-429
34. Olasolo P., Juarez, M. C., Morales, M. P., D’Amico, S. and Liarte, I. A.,2016, “Enhanced geothermal systems (EGS): A review, Renewable and Sustainable”, Energy Reviews, vol. 56, pp. 133-144
35. Oldenburg C. M. ,Pan M. ,Muir P. M. ,Eastman A. D., Higgins B. S., 2016, “Numerical Simulation of Critical Factors Controlling Heat Extraction from Geothermal System Using of a closed-looped Heat Exchange Method.”, 41st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
36. Porras, E. A., Tanaka, T., Fujii, H. and Itoi, R., 2007, “Numerical modeling of the Momotombo geothermal system, Nicaragua”, Geothermics, vol. 36, issue 4, pp.304-329.
37. Pruess K. ,Oldenburg C. and Moridis G. ,1999,”TOUGH2 User’s Guide” Version 2.0.
38. Riahi A., Moncarz P., Kolbe W. ,and Damjanac B., 2017, “Innovative Closed-Loop Geothermal Well Designs Using Water and Super Critical Carbon Dioxide as Working Fluids”, 42nd workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
39. Sarak, H. ,Korkmaz E. D., Onur M. , Satman A., 2005, “Lumped-parameter models for low-temperature” Geothermics, vol. 34, issue 6, pp.728-755.
40. Schmitt, A. K., R. L. Romer, and J. A. Stimac, 2006. “Geochemistry of volcanic rocks from the Geysers geothermal area, California Coast Ranges.” Lithos, vol. 87, issue 1-2, pp.80-103
41. Song, X., Lv, Z., Li, G., Hu, X. Shi, Y.,2017, “Numerical analysis on the impact of the flow field of hydrothermal jet drilling for geothermal wells in a confined cooling environment”, Geothermics, vol. 66, pp.39–49
42. Stefansson, V., 1997, “Geothermal reinjection experience”, Geothermics, vol. 26, pp. 99-130
43. Templeton, J. D., Ghoreishi-Madiseh S. A., Hassani F. and Al-Khawaja M. J., 2014, “Abandoned petroleum wells as sustainable sources of geothermal Energy, Energy”, vol. 70, pp. 366-373 .
44. Tian, X., Liu C. and Li, K., 2018,”Modeling of Geothermal Power Generation from Abandoned Oil Wells Using In-situ combustion Technology.”, 43rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
45. Truesdell A. H., Nehring N. L. and Mazor E. ,1982,”Geochemistry of Gasws in the Hydrothermal System of Cerro Prieto”, Proceedings of the New Zealand Geothermal Workshop, p.271.
46. Truesdell, A. H. and Fournier, R. O.,1977, “Procedure For estimating the temperature of hot water component in a mixed water by using a plot of dissolved silica versus enthalpy”, Jour. of Res. U.S. Geol. Survey, 5, pp. 49-52.
47. Truesdell, A. H. and White, D. E. ,1973, “Production of Superheaded Steam From Vapor-dominated Geothermal Reservoirs”, Geothermics, vol. 2, issue 3-4, pp.154-173
48. Wang, K., Liu, J. and Wu, X.,2018, “Downhole geothermal power generation in oil and gas wells, Geothermics”, vol. 76, pp.141-148 .
49. Yin, F., Han L., Yang, S., Xu, Z., Xiao, Y. and Wu, X.,2018, “Mechanical responses of formation and wellbore induced by water injection for enhanced geothermal system”, 43rd Workshop on Geothermal Reservoir Engineering.
50. 工研院能資所,1993,礁溪溫泉地區地球物理及鑽井探勘資料報告
51. 工業技術研究院,2013,深層地熱發電技術研發計畫,年度計畫102年1月1日至102年12月31日,研究機構能源科技專案 102年度執行報告
52. 工業技術研究院,2017,高效能地熱發電技術研發計畫(第2年度),年度計畫106年1月1日至106年12月31日,研究機構能源科技專案 106年度執行報告
53. 工業技術研究院能資所,2001,台灣溫泉水資源之調查及開發利用 (2/4),經濟部水利署
54. 工業技術研究院能資所,2002,台灣溫泉水資源之調查及開發利用 (3/4),經濟部水利署
55. 工業技術研究院能礦所,1975,台灣地熱資源探勘工作報告之一,礦業研究所第146號報告
56. 工業技術研究院能礦所,1977,台灣地熱資源探勘工作報告之二,礦業研究所第163號報告
57. 工業技術研究院能礦所,1978,台灣地熱資源探勘工作報告之三,礦業研究所第170號報告
58. 工業技術研究院能礦所,1979,台灣地熱資源探勘工作報告之四,礦業研究所第174號報告
59. 工業技術研究院能礦所,1980,台灣地熱資源探勘工作報告之五,礦業研究所第181號報告
60. 江協堂,2010,台灣東北部宜蘭平原及龜山島之地熱研究,國立台灣大學海洋研究所碩士論文
61. 宋聖榮,2003,利用二氧化系溫度計研究台灣地區熱流量變化(II)-台灣南部
62. 李京霖,2006,陽明山馬槽地區溫泉資源調查分析之研究,國立成功大學資源工程學系碩士論文
63. 李振誥、李京霖、龔文瑞,2007,陽明山馬槽地區溫泉資源調查分析之研究 ,台灣水利,第55卷,第3期,pp. 46-53
64. 李振誥、林士哲、馬惠達、林宏奕,2003,”金崙溫泉資源之調查分析”,台灣水利,第51卷,第3期,pp. 58-68
65. 李振誥、陳尉平、龔文瑞、陳進發、林宏奕,2008,溫泉可開發量推估及其應用於烏來溫泉區,台灣水利,第56卷,第1期,pp.60-68
66. 李毓仁、郭啓榮與郭吟翎,2013,50kW ORC 溫差發電系統機組開發與性能分析,電機月刊,第23卷,第2期,pp.130-139
67. 周家慧,2009,礁溪地區溫泉人工補注之研究,國立成功大學資源工程學系碩士論文
68. 林士哲,2003,金崙地區溫泉資源調查分析之研究,國立成功大學資源工程學系碩士論文
69. 林宏奕、葉信富、徐國錦、李振誥,2012,台東地區知本溫泉潛勢評估之研究,臺灣鑛業,第64卷,第4期,119-27頁
70. 林坤達,2015,以數值模擬評估地熱潛能與溫泉資源變動趨勢-以四重溪地區為例,國立成功大學資源工程學系碩士論文
71. 林錦仁,2000, 宜蘭清水地熱開發之探討,石油季刊,第36卷,第1期,pp.29-37
72. 高堂貴,2002,溫泉分布調查方法與可行性之研究,國立成功大學資源工程學系碩士論文
73. 張育誠,2002,台東縱谷(瑞穗至池上地區)之地電研究,國立中央大學地球科學學系碩士論文
74. 郭瑋萍,2008,知本地區溫泉資源調查分析之研究,國立成功大學資源工程學系碩士論文
75. 陳文福、李孫榮、夏龍源,2010,知本溫泉井之壓力試驗,應用地質技術,第2卷,第45-50頁
76. 陳宏宇 劉佳玫,2013 ,臺灣地熱潛能之發展 ,臺灣能源期刊,1:1 2013.11,第85-103頁
77. 陳昭旭、李振誥,2001,隧道湧水災害之水文地質調查及防治處理措施,地工技術雜誌,第87期,頁81-92
78. 陳肇夏,1981,地熱地質與探勘,貞觀出版社,共115 頁
79. 陳肇夏,1989,台灣的溫泉和地熱,地質,第九卷,第2期,327~340頁
80. 程楓萍,1978,臺灣溫泉之地球化學探勘,鑛冶,中國鑛冶工程學會會刊,第23卷,第4期,72-83頁
81. 程楓萍,1995,地球化學地溫指標–應用溫泉化學特性推測地下熱液溫度,能源、資源與環境,6-9頁
82. 經濟部水利署,2007,知本溪、金崙溪地下水資源調查評估(1/2)工作成果報告書,經濟部水利署水利規劃試驗所
83. 經濟部水利署,2008,南區溫泉監測系統站址規劃設計
84. 經濟部能源局 ,2007,地熱發電技術開發推動計畫(1/1),九十五年度執行報告,經濟部能源科技研究發展計畫
85. 經濟部能源局,2000,地熱發電技術開發及多目標利用推動計畫(第二年度)
86. 經濟部能源局,2016,新及再生能源前瞻技術掃描評估及研發推動-地熱溫泉低流量發電模組探索創新前瞻計畫
87. 經濟部能源委員會,1994,台灣地熱探勘資料彙編。
88. 劉佳玫、宋聖榮,2013,以地球化學方式估算臺灣溫泉區地熱儲集層溫度及模擬地熱流體之路徑,2013-08,地質系研究計畫。
89. 鍾陳東,2016,宜蘭三星地熱地下構造探勘,國立中央大學地球科學學系碩士論文
校內:2024-07-23公開