簡易檢索 / 詳目顯示

研究生: 戴德禮
Tai, Te-Li
論文名稱: 利用微晶片電泳研究蛋白質間的作用力
Investigation of Protein-Protein Interactioin Using Microchip Electrophoresis
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 156
中文關鍵詞: 電泳微晶片蛋白質
外文關鍵詞: protein, microchip, electrophoresis
相關次數: 點閱:53下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是利用微晶片電泳來分析蛋白質間的作用力,實驗的設計主要是讓抗體與抗原能在自由溶液的環境下反應作用,鍵結形成錯合物,再由微晶片電泳的分析,得到兩者形成錯合物的證明。由於人類生理系統中細胞間的訊息傳遞與蛋白質的磷酸化有關,尤其是酪胺酸蛋白激扮演著細胞生長、分化、遷移等重要的角色。因此實驗會先從已純化的磷酸化蛋白質與其抗體的反應作用來分析,進一步分析真實樣品-細胞溶胞產物。整體的實驗架構主要分為二大部份,第一部份先利用毛細管電泳作測試,先分析穩定性高且容易取得的蛋白質,如牛的血清蛋白與其抗體的作用;接下來再分析已純化的磷酸酪胺酸蛋白質。第二部份則是將毛細管電泳的實驗整合於微晶片上,形成利用微晶片電泳分析含磷酸酪胺酸的胜或蛋白質與其抗體的作用。實驗中所採用的是十字形的玻璃晶片,利用電壓的切換與時間的調控,達到樣品的注射與分離。抗體與抗原的反應,通常配合抗體不同濃度的滴定,造成圖譜中波峰的改變,並嘗試從圖譜中未鍵結型態的抗原與錯合物兩者波峰面積的改變,推算出鍵結常數。實驗結果顯示,含磷酸酪胺酸胜(FITC-peptide(pTyr))與含磷酸酪胺酸蛋白質(pTyr-BSA)分別在不同濃度的磷酸酪胺酸抗體(anti-P)反應作用下,與不含磷酸酪胺酸胜之對照組比對,可以明顯判斷出未鍵結型態與錯合物的波峰差異,並由波峰面積的改變,我們分別推算出鍵結常數K=5.0×106 M-1與K=1.01×106 M-1。
    在真實樣品的分析中,由於細胞溶胞產物所含的蛋白質種類不只一種,對於利用磷酸酪胺酸的抗體來辨識其抗原,容易產生基質干擾的問題,所以我們先對基質影響進行相關實驗,利用染料標示含磷酸酪胺酸的蛋白質(Cy5-pTyr-BSA)與不同比率的細胞溶胞產物(由phoenix細胞轉染二個質體,即pcDNA3.0-T7-Etk和pRL-c-SrcY527F)混合。由實驗結果發現真實樣品中含有強的BSA鍵結蛋白質。我們進一步利用FITC-anti-P對不同濃度的細胞溶胞產物反應作用,以偵測其含之磷酸化蛋白質,所得到的結果顯示有明顯的波峰形狀改變,但卻難以分辨抗體與抗體錯合物之訊號,這一部份的實驗仍待進一步的驗證。
    微晶片電泳不論在實驗時間與試劑用量都較傳統免疫分析法及毛細管電泳少,而且因為微管道的長度較短,單位電場強度可以較低,分析時間可以大為縮短,因此不容易破壞抗體與抗原的鍵結,有利於快速篩選及分析蛋白質間的作用力。

    In this thesis, we investigated protein-protein interaction using microchip electrophoresis. In this design, the Cy5-labelled antigen was first incubated with the antibody to form the interaction complex in the free solution and then separated from the complex species by microchip electrophoresis. The evidence of forming the interaction complex was based on the detection of both the free and the complex species and the variation of the related the peak intensity by immuno-titration. The protein phosphorylation plays an important role in regulating cellular growth, differentiation, and migration, the experiment was designed to detect the protein phosphorylation using anti phosphorylation antibody as the affinity bite.
    There are two major sections in the experiment. In the first section, we used the capillary electrophoresis to analyze a model system—anti-BSA and BSA and then analyze the target goal—phospho peptides and anti-phosphotyrosine. In the second section, we transferred the experiment from capillary electrophoresis to the microchip. In microchip electrophoresis, the sample injection and separation was integrated in a cross-microchannel which was etched on the glass substrate. The binding constant of the phospho peptide/phospho protein and the antibody was estimated by immuno-titration in which the concentration ratio between the antigen and the antibody was systematically varied. The result indicated that both the free form and complex form of comparing the FITC-peptide(pTyr) or Cy5-pTyr-BSA can be clearly detected and confirmed by the comparison with results obtained using a non-phosphorylated peptide or protein counterpart as the negative control. The binding constants for FITC-peptide(pTyr) or Cy5-pTyr-BSA with anti-phosphotyrosine, respectively was estimated to be 5.0×106 M-1 and 1.01×106 M-1.
    For real sample analysis, we first investigated the matrix effect by spiking Cy5-pTyr-BSA into the cell lysate (transfection of the phoenix cell using two plasmid, pcDNA3.0-T7-Etk and pRL-c-SrcY527F) at various ratios. From the experiment, we found that the real sample may contain the strong BSA binding proteins. We further used FITC-anti-phosphotyrosine to react with cell lysate at different concentrations to detect the phospho-protein which was supposed to be present in the cell lysate. An obvious change of the peak shape for both the free and complex species was noticed. It was however difficult to differentiate the signal of the antibody and the complex, which requires further investigations.
    Compared to the traditional immunoassay and capillary electrophoresis, the experiment time and the amount of the reagent can be greatly reduced using microchip electrophoresis w. Moreover, because of the shorter microchannel than capillary electrophoresis such that the interaction complex can be conserved and the analysis time was much shorter. Therefore, microchip electrophoresis is potentially capable of high-throughput screening of protein-protein interaction before the detection.

    中文摘要………………………………………………………………..Ⅰ 英文摘要………………………………………………………………..Ⅲ 目錄……………………………………………………………………..Ⅴ 縮寫檢索表……………………………………………………………..Ⅹ 表附錄…………………………………………………………………..XI 圖附錄………………………………………………………………...XIII 第一章 序論 1. 1 前言……………………………………………………………2 1. 2 抗體與抗原的親和力…………………………………………3 1. 3 蛋白質磷酸化…………………………………………………5 1. 4 實驗架構……………………………………………………..10 第二章 利用毛細管電泳分析蛋白質間的作用力 2. 1 毛細管電泳 2. 1. 1 前言…………………………………………………..12 2. 1. 2 電泳的發展…………………………………………..13 2. 1. 3 毛細管原理 2. 1. 3. 1 電泳………………………………………16 2. 1. 3. 2 界面電位及電滲透流……………………18 2. 1. 4 毛細管電泳裝置……………………………………..19 2. 2. 親和性毛細管電泳 2. 2. 1 前言…………………………………………………..20 2. 2. 2 推算鍵結常數的方法………………………………..22 2. 2. 3 相關文獻……………………………………………..32 2. 2. 4 實驗目的……………………………………………..33 2. 3 實驗部分 2. 3. 1 儀器………………………………………………….34 2. 3. 2 藥品與試劑………………………………………….36 2. 3. 3 毛細管柱的處理…………………………………….37 2. 3. 4 電泳緩衝溶液配製………………………………….37 2. 3. 5 樣品注射與分離條件……………………………….38 2. 3. 6 抗體與抗原的反應………………………………….38 2. 3. 7 共價性染料標示…………………………………….39 2. 4 實驗結果 2. 4. 1 利用長的毛細管柱分析的結果…………………….40 2. 4. 2 利用短的毛細管柱分析的結果……………………..43 2. 5 實驗討論 2. 5. 1 管柱長短的影響……………………………………..47 2. 5. 2 染料標示的問題……………………………………..50 2. 5. 3 不同單位電場強度的影響…………………………..52 2. 5. 4 毛細管電泳與免疫沈澱法的比較…………………..53 2. 6 小結…………………………………………………………..54 第三章 利用微晶片電泳分析蛋白質間的作用力 3. 1 前言…………………………………………………………..56 3. 1. 1 微晶片電泳…………………………………………..58 3. 1. 2 相關文獻……………………………………………..59 3. 1. 3 實驗目的……………………………………………..61 3. 1. 4 分析物簡介…………………………………………..61 3. 2 微晶片電泳系統 3. 2. 1 微晶片電泳裝置……………………………………..63 3. 2. 2 微晶片設計樣式……………………………………..65 3. 3 實驗部分 3. 3. 1 實驗藥品與試劑……………………………………..66 3. 3. 2 晶片管道處理………………………………………..67 3. 3. 3 微晶片電泳緩衝液配製……………………………..68 3. 3. 4 樣品注射與分離條件………………………………..69 3. 3. 5 抗體與抗原的反應…………………………………..69 3. 3. 6 基質干擾之影響探討-添加不同濃度的基質……..70 3. 3. 7 真實樣品之磷酸化蛋白質偵測……………………..71 3. 4 實驗結果 3. 4. 1 anti-P & FITC-peptide(pTyr)………………………..72 3. 4. 2 anti-P & FITC-peptide(Tyr)…………………………73 3. 4. 3 anti-P & Cy5-pTyr-BSA…………………………….74 3. 4. 4 anti-P & Cy5-BSA…………………………………..76 3. 4. 5 基質對anti-P與Cy5-pTyr-BSA作用力觀察之影響76 3. 4. 6 基質干擾的探討以Cy5-BSA為negative control….78 3. 4. 7 anti-P & Cy5-(Etk+Src)…………………………….79 3. 4. 8 FITC-anti-P & Etk+Src……………………………..80 3. 4. 9 FITC-anti-P & Etk…………………………………..81 3. 5 實驗討論 3. 5. 1 鍵結常數……………………………………………..82 3. 5. 2 非特異性的作用力…………………………………..85 3. 5. 3 真實樣品中的基質干擾……………………………..87 3. 5. 4 抗體與抗原反應時的濃度…………………………..89 3. 5. 5 微晶片電泳、毛細管電泳與免疫沈澱法的比較…..90 3. 6 小結…………………………………………………………..91 第四章 結論與未來展望 4. 1 總結………………………………………………………….93 4. 2 未來展望…………………………………………………….95 參考文獻……………………………………………………………….96 縮寫檢索表 anti-BSA monoclonal anti-Bovine serum albumin anti-pTyr monoclonal anti-phosphotyrosine BSA Bovine serum albumin Cy5-anti-pTyr Cy5 label anti-phosphotyrosine Cy5-BSA Cy5 label bovine serum albumin Cy5-(Etk+Src) Cy5 label real sample : cell lysate-Etk+Src Cy5-pTyr-BSA Cy5 label phosphotyrosine conjugated BSA FITC-anti-pTyr FITC label anti-phosphotyrosine FITC-peptide(pTyr) FITC label peptide (15 amino acids containing phosphotyrosine) FITC-peptide(Tyr) FITC label peptide (15 amino acids containing tyrosine) pTyr phosphotyrosine pTyr-BSA phosphotyrosine conjugated BSA SDS Sodium dodecyl sulfate 表目錄 表2-1 親和性毛細管電泳的應用……………………………………105 表2-2 anti-BSA與BSA的反應濃度…………………………….…106 表2-3 anti-pTyr與pTyr的反應濃度…………………………….…106 表2-4 anti-pTyr與Cy5-pTyr的反應濃度………………………….106 表2-5 anti-pTyr與Cy5-pTyr-BSA的反應濃度(純化方式Ⅰ)….107 表2-6 Cy5-anti-pTyr與pTyr-BSA的反應濃度…………………….107 表2-7 anti-pTyr與Cy5-pTyr-BSA的反應濃度(純化方式Ⅱ)…..107 表3-1 染料和對應的濾片……………………………………...…….108 表3-2 微晶片電泳的應用…………………………………...……….109 表3-3 anti-pTyr與FITC-peptide(pTyr)的反應濃度……….………110 表3-4 anti-pTyr與FITC-peptide(Tyr)的反應濃度………………...110 表3-5 anti-pTyr與Cy5-pTyr-BSA的反應濃度…………………….110 表3-6 anti-pTyr與Cy5-BSA的反應濃度…………………………..111 表3-7 Cy5-pTyr-BSA和Etk+Src混合後,再與anti-pTyr反應…...111 表3-8 Cy5-BSA和Etk+Src混合後,再與anti-pTyr反應…………111 表3-9 anti-pTyr與Cy5-(Etk+Src)的反應濃度……………………..112 表3-10 FITC-anti-pTyr與Etk+Src的反應濃度…………………….112 表3-11 FITC-anti-pTyr與Etk的反應濃度……………………….112 表3-12 抗體濃度的倒數,未鍵結型態的抗原與錯合物的濃度比。 ……………………………………………………………….…….….113 表3-13 抗體濃度的倒數,未鍵結型態抗原與錯合物的濃度比。 ………………………………………………………………………...113 圖目錄 圖1-1 c-Src的構造示意圖………………………………….…….….114 圖2-1 毛細管內壁解離、電雙層、界面電位之示意圖…….…….…..115 圖2-2 毛細管電泳中電滲透流(EOF)的示意圖……….…….…..116 圖2-3 毛細管電泳裝置示意圖…………………………….……..…116 圖2-4 弱鍵結與強鍵結示意圖…………………………….……..…117 圖2-5 A HD方法,Internal calibration示意圖………….……..…118 圖2-5 B HD方法,External calibration示意圖………….……….118 圖2-5 C VP方法,Internal calibration示意圖……………………119 圖2-5 D FA方法示意圖………………………………………….…119 圖2-5 E ACE方法示意圖…………………………………………..120 圖2-5 F VACE方法示意圖…………………………………………120 圖2-6 A 共價性染料(Cy5)標示蛋白質示意圖…………….……121 圖2-6 B 共價性Cy5結構圖…………………………………….…..121 圖2-7 未鍵結型態的BSA與anti-BSA 之電泳圖………………...122 圖2-8 anti-BSA與BSA反應作用之電泳圖……………………...123 圖2-9 不同濃度的anti-BSA與固定濃度的BSA作用之電泳圖 …………………………………………………………………….…..124 圖2-10 不同濃度的anti-pTyr與固定濃度的Cy5-pTyr作用之電泳圖 ……………………………………………………………………..…..125 圖2-11 未鍵結型態的pTyr與anti-pTyr之電泳圖…………………..126 圖2-12 不同濃度的pTyr與固定濃度的anti-pTyr作用之電泳圖…..127 圖2-13 不同濃度的anti-pTyr與固定濃度的Cy5-pTyr-BSA作用之電泳圖………………………………………………………..…………..128 圖2-14 不同濃度的pTyr-BSA與固定濃度的anti-pTyr作用之電泳圖 ……………………………………………………………….………..129 圖2-15 不同濃度的anti-pTyr與固定濃度的Cy5-pTyr-BSA作用之電泳圖……………………………………………………………….…..130 圖2-16與圖2-17分別代表不同單位電場的分離電泳圖…………131 圖3-1 微晶片設計樣式示意圖……………………………….……..132 圖3-2 微晶片電泳實驗裝置圖……………………………….……..133 圖3-3 微晶片樣品導入與分離示意圖……………………….……..134 圖3-4 不同濃度的anti-pTyr與固定濃度的FITC-peptide(pTyr)作用之電泳圖…………………………………………………………………135 圖3-5 不同濃度的anti-pTyr與固定濃度的FITC-peptide(Tyr)作用之電泳圖……………………………………………………………………136 圖3-6 FITC-peptide(pTyr)與FITC-peptide(Tyr)分別對anti-pTyr作用之電泳圖比較…………………………………………………………137 圖3-7 不同濃度的anti-pTyr與固定濃度的Cy5-pTyr-BSA作用之電泳圖………………………………………………………………………138 圖3-8 不同濃度的anti-pTyr與固定濃度的Cy5-BSA作用之電泳圖………………………………………………………………………139 圖3-9 A表示未鍵結型態的Cy5-pTyr-BSA之電泳圖……….…….140 圖3-9 B表示anti-pTyr與Cy5-pTyr-BSA作用之電泳圖…………….140 圖3-10 Cy5-pTyr-BSA與Etk+Src(1μL,10%)混合後再與anti-pTyr作用之電泳圖………………………………………………………....141 圖3-11 Cy5-pTyr-BSA與Etk+Src(3μL,10%)混合後再與anti-pTyr作用之電泳圖………………………………………………………...142 圖3-12 Cy5-pTyr-BSA與Etk+Src(5μL,10%)混合後再與anti-pTyr作用之電泳圖………………………………………………………...143 圖3-13 Cy5-pTyr-BSA與Etk+Src(7μL,10%)混合後再與anti-pTyr作用之電泳圖………………………………………………………....144 圖3-14 Cy5-BSA與anti-pTyr作用之電泳圖……………………..145 圖3-15 Cy5-BSA與Etk+Src(1μL,10%)混合後再與anti-pTyr作用之電圖……………………………………………………………146 圖3-16 Cy5-BSA與Etk+Src(3μL,10%)混合後再與anti-pTyr作用之電泳圖…………………………………………………………147 圖3-17 Cy5-BSA與Etk+Src(5μL,10%)混合後再與anti-pTyr作用之電泳圖…………………………………………………………148 圖3-18 Cy5-BSA與Etk+Src(7μL,10%)混合後再與anti-pTyr作用之電泳圖…………………………………………………………149 圖3-19 不同濃度的anti-pTyr與固定濃度的Cy5-(Etk+Src)作用之電泳圖………………………………………………………………………150 圖3-20 固定濃度的FITC-anti-pTyr與不同濃度的Etk+Src作用之電泳圖………………………………………………………………………151 圖3-21 固定濃度的FITC-anti-pTyr與不同濃度的Etk作用之電泳圖………………………………………………………………………152 圖3-22 anti-pTyr與FITC-peptide(pTyr) 之鍵結常數推算示意圖…153 圖3-23 anti-pTyr與Cy5-pTyr-BSA之鍵結常數推算示意圖……….154 圖3-24 不同濃度的anti-pTyr與固定濃度的Cy5-pTyr-BSA作用之電泳圖……………………………………………………….…………...155 圖3-25 不同濃度的anti-pTyr與固定濃度的Cy5-pTyr-BSA作用之電泳圖……………………………………………………………………156

    1. S. Jones, J.M. Thornton, Proc. Natl. Acad. Sci. USA., 93, 13-20 (1996)

    2. A. Lin, J. Frost, T. Deng, Cell, 70, 777-789 (1992)

    3. S.S. Taylor, A.E. Radzio, T. Hunter, FASEB. J., 9, 1255-1266 (1995)

    4. L.C. Cantley, K.R. Auger, C. Carpenetr, Cell, 64, 281-302 (1991)

    5. A. Ullrich, J. Schlessinger, Cell, 61, 203-212 (1990)

    6. R.M. Hudziak, J. Schlessinger, A. Ullrich, Proc. Natl. Acad. Sci. USA.,
    21, 7159-7163 (1987)

    7. G. Hardie, S. Hanks, The Protein Kinase Facts Book, Vol II
    Academic Press, San Diego (1995)

    8. A.D. Lvinson, H. Oppermann, L. Levintow, H.E. Varmus,
    Cell, 15, 561-572 (1978)

    9. S.A. Courtneidge, A.D. Levinson, M.J. Bishop, Proc. Natl. Acad. Sci.
    USA., 77, 3783-3787 (1980)

    10. T. David-Pfeuty, Y. Nouvian-Dooghe, J. Cell. Biol., 111, 3097-3116
    (1990)

    11. J.T. Parsons, M.J. Weber, Curr. Top. Microbiol. Immunol., 147,
    79-127 (1989)

    12. P.F. Maness, M.E. Cox, Semin. Cell. Biol., 3, 117-126 (1992)

    13. P. Soriano, C. Montgomery, R. Geske, A. Bradley, Cell, 64, 693-702
    (1991)

    14. K.M. Oddie, J.S. Litz, J.C. Balserak, D.M. Payyne, C.E. Creutz,
    S.T. Parsons, J. Neurosci. Res., 24, 38-48 (1989)
    15. M.T. Brown, J.A. Copper, Biochem, et Biophys. Acta., 1287,
    121-149 (1996)

    16. J.G. Krueger, E.A. Garber, A.R. Goldberg, Curr. Top. Microbiol. Immunol., 107, 52-124 (1983)

    17. M.P. Kamps, J.E. Buss, B.M. Sefton, Cell, 45, 105-112 (1986)

    18. M.F. Moran, C.A. Koch, D. Anderson, C. Ellis, T. Pawson,
    Proc. Natl. Acad. Sci. USA., 87, 8622-8626 (1990)

    19. D. Anderson, C.A. Koch, L. Grey, C. Ellis, M.F. Moran, T. Pawson,
    Science, 250, 979-982 (1990)

    20. H.C. Chen, J.L. Guan, J. Biol. Chem., 269, 31229-31233 (1994)

    21. J.E. Smart, H. Oppermann, A.P. Czernilofsky, A.F. Purchio, R.L. Erikson, J.M. Bishop, Proc. Natl. Acad. Sci. USA., 78, 6013-6017
    (1981)

    22. M.K. Rosen, T. Yamazaki, G.D. Gish, C.M. Kay, T. Pawson, L.E. Kay
    Nature, 374, 477-479 (1995)

    23. C.A. Cartwright, W. Eckhart, S. Simon, P.L. Kaplan, Cell, 49, 83-91
    (1987)

    24. H. Piwnica-Worms, K.B. Saunders, T.M. Robert, A.E. Smith, S.H. Cheng, Cell, 49, 75-82 (1987)

    25. C.A. Cartwright, P.L. Kaplan, J.A. Cooper, T. Hunter, W. Eckhart,
    Mol. Cell. Biol., 6, 1562-1570 (1986)

    26. S.H. Cheng, W. Markland, A.F. Markham, A.E. Smith, EMBO J.,
    5, 325-334 (1986)

    27. R.M. Kypta, Y. Goldberg, E.T. Ulug, S.A. Courtneidge, Cell, 62,
    481-492 (1990)

    28. T. Tamura, R.R. Friis, H. Bauer, FEBS Lett., 177, 151-156 (1984)

    29. K.L. Gould, J.R. Woodgett, J.L. Cooper, J.E. Buss, D. Shalloway,
    T. Hunter, Cell, 42, 849-857 (1985)

    30. L.K. Wilson, S.J. Parsons, Oncogene, 5, 1471-1480 (199)

    31. T.C. Bøg-Hansen, Anal. Biochem., 56, 480-488 (1973)

    32. N.H.H Heegaard, P. Lundahl, E. Greijer, Quantitative Analysis of
    Biospecific Interactions, Harwood Academic Publishers,
    Amsterdam, pp. 1-13 (1998)

    33. S. Nakamura, T. Wakeyama, J. Biochem. Tokyo, 49, 733-741 (1961)

    34. M. Szylit, Ann. Biol. Clin. 29, 215-227 (1971)

    35. K. Takeo, S. Nakamura, Arch. Biochem. Biophys., 153, 1-7 (1972)

    36. S.J. Gerbrandy, A. Doorgeest, Phytochemistry, 11, 2403-2407 (1972)

    37. R.A. Alberty, E.L. King, J. Am. Chem., 73, 517-523 (1951)

    38. M. Macheboeuf, P. Rebryrotte, J.-M. Dubert, M. Brunerie,
    Bull. Soc. Chem. Biol. 35, 334-345 (1953)

    39. S. Nakamura, T. Ueta, Nature 182, 875 (1958)

    40. T.T. Lee, E.S. Yeung, J. Chromatogr. 595, 319-325 (1992)

    41. N. Ressler, Clin. Chim. Acta 5, 795-800 (1960)

    42. J.J. Scheidegger, Int. Arch. Allergy 7, 103-110 (1955)

    43. P. Grabar, C.A. Williams, Biochim. Biophys. Acta 17, 67 (1955)

    44. W.A. Lim, R.T. Sauer, A.D. Lander, Methods Enzymol.
    208, 196-210 (1991)
    45. N.H.H Heegaard, T.C. Bøg-Hansen, Appl. Theor. Electrophor.
    1, 249-259 (1990)

    46. F.E.P. Mikkers, F.M. Everaerts, T.P.E.M. Verheggen,
    J. Chromatogr. 169, 11-20 (1979)

    47. J.W. Jorgenson, K.D. Lukacs, Anal. Chem. 53, 1298-1302 (1981)

    48. J.W. Jorgenson, K.D. Lukacs, Science 222, 266-272 (1983)

    49. A. Kohlarush, Ann. Phys. Chem., 62, 209-239 (1987)

    50. N.H. Heegard, R.T. Kennedy, Electrophoresis, 20, 3122-3133 (1999)

    51. H.H. Yarabe, E. Billiot, I.M. Warner, J. Chromatogr. A, 875,
    179-206 (2000)

    52. Z. EI Rassi, J. Chromatogr. A, 875, 207-233 (2000)

    53. S. Fanali, J. Chromatogr. A, 792, 1-2, 227-267 (1997)

    54. B. Koppenhoefer, X.F. Zhu, A. Jakob, S. Wuerthner, B.C. Lin,
    J. Chromatogr. A, 875, 135-161 (2000)

    55. S. Fanali, J. Chromatogr. A, 875, 89-122 (2000)

    56. S. Fanali, Z. Aturki, C. Desiderio, Enantiomer, 4, 229-241 (1999)

    57. R. Kuhn, Electrohporesis, 20, 2605-2613 (1999)

    58. R. Vespalec, P. Boček, Electrophoresis, 20, 2579-2591 (1999)

    59. V. kasička, Electrophoresis, 20, 3084-3105 (1999)

    60. Y. H. Chu, X. Zang, J. Tu, J. Chin. Chem. Soc., 45, 6, 713-720 (1998)

    61. M. Rosanne, D. Guijt-van, F. Johannes, Electrophoresis,
    21, 3905-3918 (2000)
    62. J.P. Hummel, W.J. Dreyer, Biochim. Biophys. Acta., 63, 530 (1962)

    63. B. Sebille, N. Thaud, J.P. Tillement, J. Chromatogr., 180, 103 (1979)

    64. B. Sebille, N. Thaud, J.P. Tillement, J. Chromatogr., 204, 285 (1981)

    65. F.A. Gomez, L.Z. Avilla, Y. H. Chu, G.M. Whitesides,
    Anal. Chem., 66, 1785 (1994)

    66. M. Mammen, F.A. Gomez, G.M. Whitesides, Anal. Chem., 67, 3526
    (1995)

    67. A. Ringbom, Complexation in Analytical Chemistry, Wiley
    Interscience, New York (1963)

    68. M.H.A. Busch, H.F.M. Boelens, J.C. Kraak, H. Poppe,
    J. Chromatogr. A, 775, 313 (1997)

    69. B. Sebille, R. Zini, C.V. Madjar, N. Thaud, J. Chromatogr.,
    531, 51 (1990)

    70. J. Oravcova, B. Böhs, W. Lindner, J. Chromatogr. B, 677, 1 (1996)

    71. H. Kajiwara, Anal. Chim. Acta, 383, 61-66 (1999)

    72. D. Schmalzing, W. Nashabeh, X.W. Yao, R. Mhatre, F.E. Regnier,
    N.B. Afeyan, M. Fuchs, Anal. Chem., 67, 606 (1995)

    73. J.P. Liu, H.R. Zhao, K.J. Volk, S.E. Klohr, E.H. Kerns, M.S. Lee,
    J. Chromatogr., 735, 357 (1996)

    74. Y.V. Lyubarskaya, Y.M. Dunayevskiy, P. Vouros, B.L. Kaeger,
    Anal. Chem. 69, 3008 (1997)

    75. P.G. Righetti, M. Conti, C. Gelfi, J. Chromatogr., 767, 255 (1997)

    76. J.Y. Gao, P.L. Dubin, B.B. Muhoberac, Anal. Chem. 69, 2945 (1997)

    77. F.A. Gomez, J.K. Chen, A. Tanaka, S.L. Schreiber, G.M. Whitesides,
    J. Org. Chem., 59, 2885 (1994)

    78. N.H.H. Heegaard, H.D. Mortensen, P. Roepstorff, J. Chromatogr.,
    717, 83 (1995)

    79. H. Frokiaer, H. Sorensen, J.C. Sorensen, S. Sorensen,
    J. Chromatogr., 717, 75 (1995)

    80. D.J. Winzor, J. Chromatogr., 696, 160 (1995)

    81. M.A. Stebbins, A.M. Hoyt, M.J. Sepaniak, B.K. Hurlburt,
    J. Chromatogr., 683, 77 (1996)

    82. J. Xian, M.G. Harrington, E.H. Davidson, Proc. Natl. Acad. Sci.
    U.S.A. 93, 86 (1996)

    83. D.J. Rose, Anal. Chem., 65, 3545 (1993)

    84. Y.H. Chu, D.P. Kirby, B.L. Karger, J. Am. Chem. Soc., 117, 5419
    (1995)

    85. D.L. LeTourneau, N.E. Allen, Anal. Biochem., 246, 62 (1997)

    86. M.H.A. Busch, H.F.A. Boelens, J.C. Kraak, K.H. Poppe,
    J. Chromatogr., 775, 313 (1997)

    87. Y. Tanaka, S. Terabe, J. Chromatogr., 652, 247 (1995)

    88. A. Ahmed, H. Ibrahim, F. Pastore, D.K. Lloyd, Anal. Chem.,
    68, 3270 (1996)

    89. J. Yang, D.S. Hage, Anal. Chem., 66, 2719 (1994)

    90. H. Kajiwara, A.M. Hemmings, H. Hirano, J. Chromatogr.,
    687, 443 (1996)

    91. M.P. Richards, T.L. Huang, J. Chromatogr., 690, 43 (1997)
    92. T. Minami, H. Matsubara, M. Ohigashi, N. Otaki, M. Kimura
    K. Kubo, N. Okabe, J. Chromatogr. B, 685, 353 (1996)

    93. J.P. Qua, Q.G. Wangb, T.M. Chenga, S.T.H Chanc, W.S.B Yeunga,*
    J. Chromatogr. B, 727, 63-71 (1999)

    94. Shiming Lin, Petrus Tang, Su-Ming Hsu, Electrophoresis, 20,
    3388-3395 (1999)

    95. D.M. Pinto, E.A. Arriaga, D. Craig, J. Angelova, N. Sharma, H.
    Ahmadzadeh, N.J. Dovichi, Anal. Chem., 69, 3015-3021 (1997)

    96. D.B. Craig, N.J. Dovichi, Anal. Chem., 70, 2493-2494 (1998)

    97. A. Manzs, N. Graber, H.M. Widmer, Sens. Actuators. B1, 244-248
    (1990)

    98. Y.H. Lin, G.B. Lee, C.W. Li, G.R. Huang, Y.H. Chen, K.C. Young,
    T.T. Chang, Micro-Tas 2000, Netherlands, May (2001)

    99. S.C. Jacobson, R. Hergenroder, L.B. Koutny, R.J. Warmack,
    J.M. Ramsey, Anal. Chem. 66, 1107 (1994)

    100. S.C. Jacobson, R. Hergenroder, L.B. Koutny, R.J. Warmack,
    J.M. Ramsey, Anal. Chem. 66, 2369 (1994)

    101. J. Khandurina, A. Guttman, J. Chromatogr. A 943, 159-183 (2002)

    102. N.H. Chiem, D.J. Harrison, Anal. Chem. 69, 373-378 (1997)

    103. S.D. Mangru, D.J. Harrison, Electrophoresis 19, 2301-2307 (1998)

    104. N.H. Chiem, D.J. Harrison, Electrophoresis 19, 3040-3044 (1998)

    105. J.H. Nevin, H.T. Henderson, C.H. Ahn, Biomed. Microdevices
    3, 191-200 (2001)

    106. J. Wang, A. Ibanez, A. Escarpa, Anal. Chem. 73, 5323-5327 (2001)
    107. K. Sato, M. Tokeshi, T. Kitamori, Anal. Chem. 72, 1144-1147 (2000)

    108. T. Yang, H. Mao, P.S. Cremer, Anal. Chem. 73, 165-169 (2001)

    109. V. Linder, E. Verpoorte, W. Thormann, N.F. de Rooij
    Anal. Chem. 73, 4181-4189 (2001)

    110. A. Dodge, K. Fluri, E. Verpoorte, N.F. de Rooij
    Anal. Chem. 73, 3400-3409 (2001)

    111. E. Eteshola, D. Leckband, Sens. Actuators B 72, 129-133 (2001)

    112. S.B. Cheng, C.D. Skinner, J. Taylor, S. Attiya, D.J. Harrison
    Anal. Chem. 73, 1472- 1479 (2001)

    113. C.S. Effenhauser, A. Manz, H.M. Widmer, Anal. Chem. 65, 2637
    (1993)

    114. S.C. Jacobson, R. Hergenroeder, A.W. Moore, J.M. Ramsey,
    Anal. Chem. 66, 4127 (1994)

    115. A.H. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D.J. Harrison,
    Anal. Chem. 68, 1040 (1996)

    116. G. Ocvirk, T. Tang, D.J. Harrison, Analyst, 123, 1429-1434 (1998)

    117. H. Benesi, J.H. Hilderbrand, J. Amer. Chem. Soc. 71, 2703-2707
    (1949)

    118. R. Foster, D.L. Hammick, A.A. Wardley, J. Amer. Chem. Soc.
    3817-3820 (1953)

    119. C. Horvath, W. Melander, I. Molnar, Anal. Chem., 49, 142-158
    (1977)

    120. D.W. Armstrong, G.Y. Stine, J. Amer. Chem. Soc., 105,
    2962-2964 (1983)
    121. K.L. Rundlett, D.W. Armstrong, J. Chromatogr. A, 721, 173-186
    (1995)

    122. T.F. Boles, R.A. Drago, J. Amer. Chem. Soc., 87, 5015-5019 (1965)

    123. T.F. Boles, R.A. Drago, J. Amer. Chem. Soc., 88, 3921-3925 (1966)

    124. D. Neerinck, A. Van-Audenhauge, L. Lamberts, P. Huyskens,
    Nature, 218, 461-462 (1968)

    125. A.K. Colter, D. Buben, Can. J. Chem., 54, 2141-2153 (1976)

    126. R.I. Gelb, L.N. Schwartz, R.F. Johnson, D.A. Laufer,
    J. Amer. Chem. Soc., 101, 1869-1874 (1979)

    127. L. Michaelis, M.L. Menten, Biochem. Z., 49, 333-369 (1913)

    128. H. Lineweaver, D.J. Burk, J. Amer. Chem. Soc., 56, 658-666
    (1934)

    129. M.W. Steward, J. Steensgaard, Antibody Affinity: Thermodynamics
    Aspects and Biological Significance, CRC Press, Boca Raton, FL, 1983

    130. G. Scatchard, N.Y. Ann, Acad. Sci., 51, 660-672 (1949)

    131. A. Nisonoff, D. Pressman, J. Immunol.,80, 417-428 (1958)

    132. V.N. Schumaker, G. Green, R. Wider, Immunochem., 10, 521-528
    (1973)

    133. M. Sela, “The Antigens” Academic Press, New York, 1974, 1

    下載圖示 校內:立即公開
    校外:2003-06-10公開
    QR CODE