| 研究生: |
黃毓仁 Huang, Yu-Jen |
|---|---|
| 論文名稱: |
密閉式冷卻水塔淋水蒸發冷卻兩相流分析及電腦輔助設計軟體開發 The Two-Phase Flow Analysis for Falling Film Evaporative Cooling and the CAD Software Development for a Closed-Type Cooling Tower |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 密閉式冷卻水塔 、蒸發冷卻 、數值模擬 、電腦輔助設計軟體 |
| 外文關鍵詞: | closed-type cooling tower, evaporative cooling, numerical simulation, CAD software |
| 相關次數: | 點閱:186 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
密閉式冷卻水塔為工業界常用之熱交換器,其具有冷卻能力較一般乾式熱交換強之優點。密閉式冷卻水塔有三個工作流體:管内流體、淋水與濕空氣,管內流體可以是水或壓縮空氣等流體,管内流體經由管壁將熱量傳遞給淋水,而淋水則透過顯熱熱傳與潛熱熱傳將熱量傳遞至濕空氣,由於熱量傳遞的過程中有潛熱熱傳的存在,故管內流體理論上可以達到的最低溫度為空氣進口濕球溫度,低於乾式熱交換器所能達到的最低溫度。
本論文首先會依據能量與質量守恆推導逆流式密閉式冷卻水塔的一維數值解數學模型,並透過適當的假設將一維數值解模型簡化為一維近似解析解模型。藉由一維數值解與一維近似解析解可以初步了解密閉式冷卻水塔中各工作流體之間熱量傳遞的過程,以及各工作流體的溫度與空氣的濕度分佈。
接著本論文會使用計算流體力學軟體搭配使用者定義函數(user define function, UDF)進行數值模擬,由於密閉式冷卻水塔的物理現象較為複雜,難以透過數值方法進行完整的模擬,故本論文會針對淋水與濕空氣在管群中的熱質傳遞過程進行數值模擬。本研究的模擬模型為四根交錯排列的圓管所組成之管群,圓管管壁為等溫壁面,淋水由圓管上方滴淋至管壁上並形成水膜;空氣則由流道下方進入,與淋水呈逆向流動。本論文針對不同的濕空氣進口速度、相對濕度以及淋水密度進行模擬,並討論各參數的改變對熱質傳過程的影響。
模擬結果顯示,濕空氣進口流速的改變對熱傳量具有明顯影響,當濕空氣進口流速由2m/s增加至3.5m/s時,總熱傳量增加29.33%,其中熱傳量的增加是水膜表面的顯熱熱傳係數與質傳係數增加所造成。濕空氣進口相對濕度愈高則總熱傳量愈低,而總熱傳量的減少主要是潛熱熱傳量減少所致,進口相對濕度的改變對總熱傳量的影響顯著,當進口相對濕度由40%增加至70%,總熱傳量減少了14.86%。淋水密度增加會使總熱傳量減少,但熱傳量的減少幅度相較於淋水量的增加幅度而言十分小,當淋水密度增加至原本的4倍,總熱傳量僅減少19.22%。
本論文的最後會透過Visual Basic程式開發密閉式冷卻水塔電腦輔助設計軟體。本軟體有兩個主要功能:性能評估與尺寸設計,性能評估功能可以根據使用者設計之工作流體進口條件與冷卻水塔尺寸評估該冷卻水塔的性能,即計算該冷卻水塔的工作流體出口狀態、總熱傳量以及壓降等性能參數;尺寸設計功能則是在已知工作流體進口狀態的條件下,根據使用者所需要達到的總熱傳量推算所需的工作流體質量流率與密閉式冷卻水塔的尺寸。
The purpose of this study is to analyze the heat and mass transfer process of the closed-type cooling tower. There are three parts in this study. First, this study derived the 1-D numerical model of a closed-type cooling tower, then simplified it to 1-D approximate analytic model. The difference of the total heat transfer rate between the two mathematical model is 1.79%.
In the second part, this study used computational fluid dynamic software with the assist of user define function (UDF) to simulate the heat and mass transfer between the falling film and humid air in tube bundle, and discussed the effect of different air inlet velocity, relative humidity, and film density. The result of the simulation shows that the increase of air inlet velocity affects the heat transfer rate significantly. As the air inlet velocity increases from 2m/s to 3.5m/s, the total heat transfer rate increases 29.33%. Air inlet relative humidity also has big effect on heat transfer rate. As the air inlet relative humidity increase from 40% to 70%, the total heat transfer rate decreases 14.86%. However, the increase of film density has no large effect on heat transfer rate. The total heat transfer rate decreases 19.22%, as the film density increase from 0.05kg/m·s to 0.2kg/m·s.
In the third part, this study developed a CAD software for the closed-type cooling tower. There are two main functions in the CAD software: rating and sizing. The rating function calculates the performance of a closed-type cooling tower as the inlet conditions of working fluids and the dimensions of the cooling tower are known. The sizing function assists users with designing the dimensions of cooling tower and deciding the flow rate of each working fluid in order to achieve the required performance.
Grossman, G., “Simultaneous Heat and Mass Transfer in Film Absorption Under Laminar Flow”, International J. Heat Mass Transfer, Vol.26, No.3, pp.357-371, 1983.
Mizushina, T., and Ito, R., “Characteristics and Methods of thermal Design of Evaporative Coolers”, International Chemical Engineering, Vol.8, No.3, pp.532-538, 1968.
Webb, R. L., “A Unified theoretical Approach for Thermal Analysis of Cooling Tower, Evaporative Condensers and Fluid Coolers”, ASHRAE Trans., Vol.90, Prat 2B, PP.398-415, 1984.
Webb, R. L., and Villacres, A., “Performance Simulation of Evaporative Heat Exchangers (Cooling Towers, Fluid Coolers and Condensers)”, Heat Transfer Engineering, Vol.6, No.2, PP.31-38, 1985.
Wassel, A. T., and Mills, A. F., “Design Methodology for a Counter-current falling Film Evaporative Condenser”, J. of Heat Transfer (ASME), Vol.109, pp.784-787, 1987.
Tsay, Y. L., “Heat Transfer Enhancement through Liquid Film Evaporation into Countercurrent Moist Air Flow in a Vertical Plate Channel”, Heat and Mass Transfer, Vol.30, pp.473-480, 1995.
Jang, J. Y., and Wang. Z. G., “Heat and Mass Transfer Performances of Closed-Type Cooling Towers”, 'CHT'01-Advances in Computational Heat Transfer II. Proceedings of the Second Symposium, Palm Cove, Queensland, Australia, 20-25 May, 2001.
Papaefthimiou, V. D., Rogdakis, E. D., Koronaki, I.P., and Zannis, T. C., “Thermodynamic study of the effects of ambient air conditions on the thermal performance characteristics of a closed wet cooling tower”, Applied Thermal Engineering, Vol.33-34, pp.199-207, 2012.
劉晶, 謝安國, “密閉式冷卻水塔冷卻過程的換熱分析與計算機仿真”, 製冷與空調, Vol.7, pp.23-27, 2007.
Yan, W. M., and Lin, T. F. “Evaporative Cooling of Liquid Film Through Interfacial Heat and Mass Transfer in a Vertical Channel-II. Numerical Study”, International J. Heat Mass Transfer, Vol.34, pp.1113-1124, 1991.
Yan, W. M., “Effects of Film Evaporation on Laminar Mixed Convection Heat and Mass Transfer in a Vertical Channel”, International J. Heat Mass Transfer, Vol.35, No.12, pp.3419-3429, 1992.
Yan, W. M., and Soong, C. Y., “Numerical Study of Liquid Film Cooling in a Turbulent Gas Stream”, International J. Heat Mass Transfer, Vol.36, No.16, pp.3877-3885, 1993.
Yan, W. M., and Soong, C. Y., “Convective Heat and Mass Transfer along an Inclined Heated Plate with Film Evaporation”, International J. Heat Mass Transfer, Vol.38, No.7, pp.1261-1269, 1995.
Yan, W. M., “Effects of Film Vaporization on Turbulent Mixed Convection Heat and Mass Transfer in a Vertical Channel”, International J. Heat Mass Transfer, Vol.38, No.4, pp.713-722, 1995.
Tsay, Y. L., Lin, T. F., and Yan, W. M., “Cooling of a Falling Liquid Film Through Interfacial Heat and Mass Transfer”, Multiphase Flow, Vol.16, pp.853-865, 1990.
Tsay, Y. L., “Analysis of Heat and Mass Transfer in a Countercurrent-flow Wet Surface Heat Exchanger”, Heat and Fluid Flow, Vol.15, 1994.
Gan, G., and Riffat, S.B., “Numerical Simulation of Colsed Wet Cooling Towers for chilled ceiling Systems”, Applied Thermal Engineering, Vol.19, pp.1279-1296, 1999.
Gan, G., Riffat, S. B., Shao, L., and Doherty, P., “Application of CFD to Closed-Wet Cooling Towers”, Applied Thermal Engineering, Vol.21, pp.79-92, 2001.
Lee, Y. T., Hong, S., Dang, C., Chien, L. H., Chang, L. W., and Yang, A. S., “Heat Transfer Characteristics of Obliquely Dispensed Evaporating Falling Films on an Elliptic Tube”, Heat and Mass Transfer, Vol.132, pp.238-248, 2019.
Lee, Y. T., Hong, S., Dang, C., Chien, L. H., and Yang, A. S., “Effect of Counter Current Airflow on Film Dispersion and Heat Transfer of Evaporative Falling Film over a Horizontal Elliptical Tube”, Heat and Mass Transfer, Vol.141, pp.964-973, 2019.
Wang, X., Chang, H., Corradini M., Cong, T., and Wang, J., “Prediction of Falling Film Evaporation on the AP1000 Passive Containment Cooling System Using ANSYS FLUENT Code”, Annals of Nuclear Energy, Vol.95, pp.168-175, 2016.
Du, K., Hu, P., and Hu, Z., “Numerical Investigation of Water Film Evaporation with the Countercurrent Air in the Asymmetric Heating Rectangular Channel for Passive Containment Cooling System”, Science and Technology of Nuclear Installations, 2020.
Gnielinski, V., “New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow”, Industrial and Eng.Chemistry, vol. 16, PP.359-368, 1976.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., “Transport Phenomena”, Wiley, New York, 1960.
Threlkeld, J. L., Thermal Environmental engineering, Prentice-Hall, New-York, 1970.
ANSYS FLUENT, Version 18.2: User Manual. ANSYS, Inc., Canonsburg, USA, 2017.
Serth, R. W., “Process Heat Transfer Principles, Applications and Rules of thumb”, 2nd ed, CH4, Amsterdam : Academic Press, 2014.
Kays, W.M., and London, A.L.,. “Compact Heat Exchanger”, 3rd ed., McGraw-Hill, New York, 1984.
Incropera, F. P., Dewitt, D. P., Bergman, T. L., and Lavine, A. S., “Principles of Heat and Mass Transfer”, Global edition, CH7, J. Wiley, New York, 2017.
Detlev, G. K., “Air-cooled Heat Exchangers and Cooling Towers”, Penn Well, Oklahoma, 2004.