| 研究生: |
陳巧佩 Chen, Chiao-Pei |
|---|---|
| 論文名稱: |
含氮冠醚基團共聚苯的合成、鑑定與其在化學感測器及電子注入層之應用 Synthesis, Characterization, Chemosensory and Electron Injection Layer Application of Copoly(p-phenylene) Containing Azacrown Ether Groups |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 螢光感測器 、含氮冠醚 、高分子發光二極體 、電子注入層 |
| 外文關鍵詞: | Chemosensor, Azacrown ether, PLED, EIL |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用Suzuki聚合反應合成出側鏈帶有含氮冠醚基團和烷氧鏈的共聚苯高分子P0和P1,並探討P1對金屬離子的辨識能力與這些高分子作為PLED元件電子注入層時的應用。當加入鋅離子後,吸收光譜呈現藍位移,可推測為鋅離子與含氮冠醚有作用力,引發光誘導電荷轉移效應(PCT),而螢光光譜強度的下降,推測是被激發後的發光團將能量轉移給鋅離子所引起的螢光焠熄,在其它離子的干擾之下,P1對鋅離子仍顯示高度的選擇性,溶液顏色變化可直接以肉眼辨識,靈敏度與其他文獻相比也有顯著提升,再加上可溶於一般有機溶劑及高極性溶劑,因此應用面大幅增加。在元件應用方面,以合成出來的高分子以及含碳酸鹽類的高分子作為電子注入層,取代傳統低功函數金屬,並以溼式製程製備高效率的PLED元件,其中以『P1 + 碳酸銫(Cs2CO3)』作為電子注入層時有最佳表現,最大電流效率由無電子注入層的0.44 cd/A提升至13.25 cd/A,提升了30倍,最大功率效率則由0.16 lm/W提升至9.16 lm/W,提升了57倍,而整體元件的效率、亮度、起始電壓也均有改善,達到提高PLED良率和效率的目的,原因推測為電子注入能力的提升,本研究並以原子力顯微鏡和光伏打量測來證明元件效率提升的假設。
A copoly(p-phenylene) chemical sensor (P1) containing pendant azacrown ether and ethylene glycol ether was synthesized by the Suzuki coupling reaction. The polymers were satisfactorily characterized by 1H NMR, FT-IR, elemental analysis, DSC, TGA, GPC, optical spectroscopy and cyclic voltametry. The absorption spectra showed blue-shift in the presence of Zn2+, which has been attributed to the photoinduced charge transfer (PCT) process. Also the fluorescence quenching was observed, which is resulted from energy transfer from fluorophore to Zn2+ directly. With increasing Zn2+ concentration the collision and complex formed between fluorophore and Zn2+ are raised, leading to significant reduction in fluorescence intensity. Upon the addition of Zn2+ the fluorescence quenching led to color changes which were detectable by naked eye. The static and dynamic quenching constants (Ksv) were 1.07×105 and 3.66×106 M-1, respectively, when measured in a mixture of THF and water (v/v = 9/1). Accordingly, it is a promising chemical sensor for Zn2+.
Interestingly, the P1 are also highly efficient electron-injection layer (EIL) for the fabrication of multi-layer polymer light-emitting diodes (PLEDs) by wet processes, particularly after chelating with metal carbonate (M2CO3: M is Na, K or Cs). The PLED with P1 plus Cs2CO3 as EIL revealed the best device performance. The maximum luminance, maximum current efficiency and maximum luminous power efficiency of PF-Green-B based device were 17049 cd/m2, 13.25 cd/A and 9.16 lm/W, respectively, which were superior to those without the EIL (891 cd/m2, 0.44 cd/A, 0.16 lm/W). In addition, the turn-on voltage was reduced greatly; for instance, it was reduced from 5.7 V to 3.5 V when P1 plus Cs2CO3 was employed as the EILs. The performance has been attributed to enhanced electron injection through cathode modification. The EIL decreases work function of the aluminum cathode, which was confirmed by the significant raise of open-circuit voltage (Voc) obtained in photovoltaic measurements. These results show that P1 is a promising lelectron-injection material for optoelectronic applications.
1. R. H. Patridge, Polymer, 24, 733 (1983).
2. J. H. Burrououghes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539 (1990).
3. D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
4. D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev., 100, 2537 (2000).
5. J. W. Lee, H. S. Jung, P. S. Kwon, J. W. Kim, R. A. Bartsch, Y. Kim, S. J. Kim, J. S. Kim, Org. Lett., 10, 3801 (2008).
6. A. W. Czarnik, Supramolecular Chemistry, Fluorescence, and Sensing. Fluorescent Chemosensors for Ion and Molecule Recognition, American Chemical Society, 538, 1-9 (1993).
7. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev., 97, 1515 (1997).
8. K. Cammann, U. Lemke, A. Rohen, J. Sander, H. Wilken, B.Winter, Angew. Chem .Int. Ed., 30, 516 (1991).
9. B. Valeur, Probe design and chemical sensing. Top. Fluoresc. Spectrosc., 4, 21 (1994).
10. R. Abbel, A. P. H. J. Schenning, E. W. Meijer, J. Polym. Sci., Part A: Polym. Chem. 47, 4215 (2009).
11. G. W. Gokel, W. M. Leevy, M. E. Weber, Chem. Rev., 104, 2723 (2004).
12. L. C. Clark, C. Lyons, N. Y. Ann, Acad. Sci., 102, 29 (1962).
13. 吳知易,陳雲,國立成功大學化學工程研究所博士論文 (2005).
14. A. Angeli, Gazz. Chim. Ital., 46, 279 (1916).
15. A. F. Diaz, K. K. Kanazawa, G. P. Gardini, J. Chem. Soc. Chem. Commun., 635 (1979).
16. 蕭如娟,科儀新知,P.65 (1988).
17. D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1990).
18. T. Ajn, S. Y. Song, H. Ku, Macromolecules., 33, 6764 (2000).
19. A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu,E. P. Woo, Appl. Phy. Lett., 73, 629 (1998).
20. G. Hughes, M. R. Bryce, J. Mater. Chem., 15, 94 (2005).
21. H. B. Layrent, A. Castellan, M. Daney, J. P. Desvergne, G. Guinand, P. Marsau, M. H. Riffaud, J. Am. Chem. Soc., 108, 315 (1986).
22. B. Valeur, I. Leray, Coord. Chem. Rev., 205, 3 (2000).
23. R. Bergonzi, L. Fabbrizzi, M. Licchelli, C. Mangano, Coord. Chem. Rev. 170, 31 (1998).
24. J. R. Lakowicz. Principles of fluorescence spectroscopy, 2nd ed, Plenum Publishers, New York., 13 (1999).
25. 黃孝文,陳雲,化工資訊月刊,第15卷第3期,P.8 (2001).
26. 葉昆明,陳雲,科學發展,第385期,P.58 (2005).
27. 陳信宏,陳雲,中工高雄會刊,第3期,P.72 (2006).
28. 楊素華,光訊雜誌,第98 期,P.29 (2002).
29. S. H. Mashraqui, S. Sundaram, T. Khana, A. C. Bhasikuttanb, Tetrahedron Lett., 63, 11093 (2007).
30. T. Emiliano, K. Arna, M. S. Lisa, H. T. Matthew, W. Michael, Inorg. Chem., 48, 319 (2009).
31. N. Julius, B. Anamitro, Tetrahedron Lett., 48, 7316 (2007).
32. A. L. Bush, Trends Neurosci., 26, 207 (2003).
33. S. J. Lippard, J. M. Berg, Principles of Bioinorganic Chemistry, University Science Books: Mill Valley (1994).
34. M. Hambidge, R. J. Cousins, R. B. Costello, J. Nutr., 130, 1341 (2000).
35. M. P. Cuajungco, G. Lees, J. Brain Res., 23, 219 (1997).
36. Z. Linna , Y. Chuluo, C. Zhong, L. Xu, Q. Jingui, Polymer, 49, 3716 (2008).
37. Z. Xianfeng, S. Fengyu, T. Yanqing, Y. B. Cody, H. J. Roger, R. M. Deirdre, J. Am. Chem. Soc., 133, 18530 (2011).
38. I. M. Vladimir, D. D. Alexander,A. B. Vladimir, V. T. Alexey, ARKIVOC, iv, 90 (2008).
39. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis. In 5th ed., chapter 15 (1998).
40. J. R. Lakowicz, Solvent and Evironmental Effects. Principles of Fluorescence Spectroscopy, 3rd ed., chapter 6 (2006).
41. J. R. Lakowicz, Solvent and Evironmental Effects. Principles of Fluorescence Spectroscopy, 3rd ed., chapter 8 (2006).
42. Z. H. Kafafi, Organic Electroluminescence, US Naval Research Lab, Washington, DC, USA (2005).
43. V. May, O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems. In 2nd ed., chapter 8 (2003).
44. S. H. Chen, The Synthesis and Optoelectronic Properties of Electroluminescent Polymers Consisting of Hole- and Electron-Transporting Segments. Doctoral Dissertation, National Cheng Kung University (2006).
45. G. L. Closs, M. D. Johnson, J. R. Miller, P. Piotrowiak, J. Am. Chem. Soc., 111, 3751 (1989).
46. http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Fundamentals/Dexter_Energy_Transfer.
47. J. L. Segura, Acta Polymerica 49, 319 (1998).
48. J. J. M. Halls, C. A. Walsh, N. C. Greenham, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, Nature, 376, 498 (1995).
49. Y. Yang, A. J. Heeger, Nature, 374, 539 (1990).
50. H. A. M. van Mullekom, J. A. J. M. Vekemans, E. E. Havinga, E. W.Meijer, Mater. Sci. Eng., 32, 1 (2001).
51. A. J. Heeger, J. Phys. Chem. B, 105, 8475 (2001).
52. M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Nature, 409, 494 (2001).
53. G. G. Malliaras, J. C. Scott, ibib, 83, 5399 (1998).
54. T. Wakimoto, Y. Fujihira, K. Nagayama, A. Yokoi, H. Nakada, M. Tsuchida, IEEE Trans. Electron. Devices, 44, 1245 (1997).
55. C. Ganzorig, K. Suga, M. Fujihira, Mater. Sci. Eng., B85, 140 (2001).
56. C. Ganzorig, M. Fujihira, Appl. Phys. Lett., 85, 4774 (2004).
57. M. Stobel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, A. Winnacker, Appl. Phys. Lett., 76, 115 (2000).
58. T. H. Lee, J. C. A. Huang, T. F. Guo, T. C. Wen,Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, Y. J. Hsu, Adv. Funct. Mater., 16, 3036 (2008).
59. M. W. Lin, C. T. Wen, Y. J. Hsu. T. F. Guo, J. Mater. Chem., 21, 18840 (2011).
60. F. Huang, Y. H. Niu, Y. Zhang, J. W. Ka, Michelle S. Liu, Alex K.-Y. Jen, Adv. Mater., 19, 2010 (2007).
61. X. Xu, B. Han, J. Chen, J. Peng, H. Wu, Y. Cao, Macromolecules, 44, 4204 (2011).
62. F. Huang, P. I. Shih, C. F. Shu, Y. Chi, Alex K.-Y. Jen, Adv. Mater., 21, 361 (2009).
63. H. H. Lu, Y. S. Ma, N. J. Yang, G. H. Lin, Y. C. Wu, S. A. Chen, J. Am. Chem. Soc., 133, 9634 (2011).
64. S. H. Oh, D. Vak, S. I. Na, T. W. Lee, D. Y. Kim, Adv. Mater., 20, 1624 (2008).
65. Lawrence, N. J., The Wittig Reactions and Related Methods in Preparation of Alkenes: A Practical Approach. In Willians, J. M. J., Ed. Oxford University Press: New York (1996).
66. O. Meth-Cohn, S. P. Stanforth, Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Pergamon Press: Oxford, chapter 3-5 (1991).
67. N. Miyaura, A. Suzuki, Chem. Rev., 95, 2457 (1995).
68. M. Yuan, Y. Li, J. Li, C. Li, X. Liu, J. Lv, J. Xu, H. Liu, S. Wang, D. Zhu, Org. Lett., 9, 2313 (2007).
69. J.F. Le´tard, R. Lapouyade, W. Rettig, Pure Appl. Chem., 65, 1705 (1993).
70. T. Bernius, M. Inbasekaran, J. O’Brien, W. Wu, Adv. Mater., 12, 1737 (2000).
71. C. C. Huang, H. F. Meng, G. K. Ho, C. H. Chen, C. S. Hsu, Appl. Phys. Lett., 84, 1195 (2004).
72. H. H. Lu, Y. S. Ma, N. J. Yang, G. H. Lin, Y. C. Wu, S. A. Chen, J. Am. Chem. Soc., 133, 9634 (2011).