簡易檢索 / 詳目顯示

研究生: 陳巧佩
Chen, Chiao-Pei
論文名稱: 含氮冠醚基團共聚苯的合成、鑑定與其在化學感測器及電子注入層之應用
Synthesis, Characterization, Chemosensory and Electron Injection Layer Application of Copoly(p-phenylene) Containing Azacrown Ether Groups
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 112
中文關鍵詞: 螢光感測器含氮冠醚高分子發光二極體電子注入層
外文關鍵詞: Chemosensor, Azacrown ether, PLED, EIL
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用Suzuki聚合反應合成出側鏈帶有含氮冠醚基團和烷氧鏈的共聚苯高分子P0和P1,並探討P1對金屬離子的辨識能力與這些高分子作為PLED元件電子注入層時的應用。當加入鋅離子後,吸收光譜呈現藍位移,可推測為鋅離子與含氮冠醚有作用力,引發光誘導電荷轉移效應(PCT),而螢光光譜強度的下降,推測是被激發後的發光團將能量轉移給鋅離子所引起的螢光焠熄,在其它離子的干擾之下,P1對鋅離子仍顯示高度的選擇性,溶液顏色變化可直接以肉眼辨識,靈敏度與其他文獻相比也有顯著提升,再加上可溶於一般有機溶劑及高極性溶劑,因此應用面大幅增加。在元件應用方面,以合成出來的高分子以及含碳酸鹽類的高分子作為電子注入層,取代傳統低功函數金屬,並以溼式製程製備高效率的PLED元件,其中以『P1 + 碳酸銫(Cs2CO3)』作為電子注入層時有最佳表現,最大電流效率由無電子注入層的0.44 cd/A提升至13.25 cd/A,提升了30倍,最大功率效率則由0.16 lm/W提升至9.16 lm/W,提升了57倍,而整體元件的效率、亮度、起始電壓也均有改善,達到提高PLED良率和效率的目的,原因推測為電子注入能力的提升,本研究並以原子力顯微鏡和光伏打量測來證明元件效率提升的假設。

    A copoly(p-phenylene) chemical sensor (P1) containing pendant azacrown ether and ethylene glycol ether was synthesized by the Suzuki coupling reaction. The polymers were satisfactorily characterized by 1H NMR, FT-IR, elemental analysis, DSC, TGA, GPC, optical spectroscopy and cyclic voltametry. The absorption spectra showed blue-shift in the presence of Zn2+, which has been attributed to the photoinduced charge transfer (PCT) process. Also the fluorescence quenching was observed, which is resulted from energy transfer from fluorophore to Zn2+ directly. With increasing Zn2+ concentration the collision and complex formed between fluorophore and Zn2+ are raised, leading to significant reduction in fluorescence intensity. Upon the addition of Zn2+ the fluorescence quenching led to color changes which were detectable by naked eye. The static and dynamic quenching constants (Ksv) were 1.07×105 and 3.66×106 M-1, respectively, when measured in a mixture of THF and water (v/v = 9/1). Accordingly, it is a promising chemical sensor for Zn2+.
    Interestingly, the P1 are also highly efficient electron-injection layer (EIL) for the fabrication of multi-layer polymer light-emitting diodes (PLEDs) by wet processes, particularly after chelating with metal carbonate (M2CO3: M is Na, K or Cs). The PLED with P1 plus Cs2CO3 as EIL revealed the best device performance. The maximum luminance, maximum current efficiency and maximum luminous power efficiency of PF-Green-B based device were 17049 cd/m2, 13.25 cd/A and 9.16 lm/W, respectively, which were superior to those without the EIL (891 cd/m2, 0.44 cd/A, 0.16 lm/W). In addition, the turn-on voltage was reduced greatly; for instance, it was reduced from 5.7 V to 3.5 V when P1 plus Cs2CO3 was employed as the EILs. The performance has been attributed to enhanced electron injection through cathode modification. The EIL decreases work function of the aluminum cathode, which was confirmed by the significant raise of open-circuit voltage (Voc) obtained in photovoltaic measurements. These results show that P1 is a promising lelectron-injection material for optoelectronic applications.

    目錄 中文摘要 I Abstract II 致謝 IV 目錄 V 流程目錄 VIII 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 金屬離子感測器的介紹 2 1-3 冠醚(Crown Ether)的介紹 3 1-4 共軛高分子的發展 4 1-4-1 共軛高分子在化學感測器上的應用 4 1-4-2 共軛高分子在有機發光二極體上的應用 5 1-5 螢光感測器的訊號變化與作用機制 6 1-5-1 激發雙體(excimer)的形成 6 1-5-2 光誘導的電子轉移(photoinduced electron transfer, PET) 7 1-5-3 光誘導的電荷轉移(photoinduced charge transfer, PCT) 8 1-5-4 光誘導的能量傳遞(photoinduced energy transfer) 10 1-6 元件發光原理及結構 11 1-6-1 發光原理 11 1-6-2 單層元件 12 1-6-3 多層元件 13 1-7 研究目的與動機 14 第二章 文獻回顧 16 2-1 螢光理論 16 2-2 溶劑效應對光譜變化的影響 19 2-3 螢光焠熄效應(Fluorescence Quenching) 21 2-3-1 動態焠熄模式(Dynamic Quenching) 21 2-3-2 靜態焠熄模式(Static Quenching) 22 2-3-3 綜合動態和靜態的焠熄模式(Sphere of Action Model) 24 2-4 能量轉移效應(Energy Transfer) 25 2-4-1 輻射型態(trivial radiative)的能量轉移 25 2-4-2 非輻射型態(non-trivial radiative)的能量轉移 26 2-5 有機電激發光二極體 28 2-5-1 共軛高分子發光材料 29 2-5-2 有機發光二極體效率的探討 29 2-6 反應機制 (Reaction Mechanism) 32 第三章 實驗內容 35 3-1 實驗裝置與設備 35 3-2 鑑定測量儀器 36 3-3 物性及光電性質測量儀器 37 3-4 待測溶液的配製與感測器的量測 43 3-5 實驗藥品材料 43 3-6 反應流程 46 3-7 單體以及高分子P0, P1的合成 47 3-8 元件製作 52 第四章 結果與討論 56 4-1 單體與高分子的合成與鑑定 56 4-1-1 核磁共振光譜(NMR) 57 4-1-2 元素分析儀(EA) 58 4-2 高分子性質的測量與分析 66 4-2-1 高分子分子量分析 66 4-2-2 高分子熱性質的分析 67 4-3 光學性質 70 4-3-1 高分子在溶液中及薄膜態的光學性質 70 4-3-2 相對量子效率 72 4-3-3 高分子P1的溶劑效應 73 4-3-4 螢光感測器對不同金屬陽離子的感測能力 75 4-3-5 光譜變化的機制探討 79 4-3-6 化學感測器對Zn2+靈敏度的探討 81 4-3-7 化學感測器對Zn2+選擇性的探討 85 4-4 電化學性質 88 4-4-1 高分子電化學性質探討 89 4-4-2 高分子發光二極體(PLED)的元件特性 91 4-4-3 元件效率提升的探討 99 第五章 結論 106 參考文獻 108 流程目錄 Scheme 3-1. The synthetic procedures of P0 and P1 47 表目錄 Table 2-1. 取代基對物質螢光波長及效率的影響 18 Table 2-5-1. The work functions of various metals 31 Table 4-1. The Synthetic Result of Compounds 59 Table 4-2. The Synthetic Result of Polymers 60 Table 4-3. Characterization and Thermal Properties of the Polymers 68 Table 4-4. Optical properties of Polymers 71 Table 4-5. Absorption and fluorescence maximum wavelength of P1 in various solvents. 75 Table 4-6. Stern-Volmer constants of ethanol and THF systems 84 Table 4-7. Electrochemical potentials of Polymers 89 Table 4-8. Optoelectronic Properties of the Light-emitting Diodes 99 Table 4-9. Photovoltaic properties of the Light-emitting Diodes. 102 圖目錄 Figure 1-3-1. Cyclo-oligomers of ethylene oxide, from dioxane to 18-crown-6. 4 Figure 1-4-1. Enhancing the sensitivity of chemosensors by wiring chemosensory molecules in series. 5 Figure 1-5-1. Bisanthraceno-crown form an excimer with Na+ ion. 6 Figure 1-5-2. Principle of cation recognition by fluorescent PET sensors. 7 Figure 1-5-3. Crown-containing PET sensors 8 Figure 1-5-4. Spectral displacements of PCT sensors resulting from interaction of a bound cation with an electron-donating or electron-withdrawing group 9 Figure 1-5-5. Crown-containing PCT sensors in which the bound cation interacts with the donor group 10 Figure 1-5-6. Photoinduced energy transfer diagram. 11 Figure 1-6-1. Optical excitation diagram. 12 Figure 1-6-2. Electric excitation diagram 12 Figure 1-6-3. Single-layer device structure 13 Figure 1-6-4. Multi-layer device structure. 14 Figure 2-1-1. The electron spins of the ground state and excited states 16 Figure 2-1-2. The energy-level diagram for a typical photoluminescent molecule 17 Figure 2-2-1. Effects of the electronic and orientation reaction fields on the energy of a dipole in a dielectric medium, μE > μG. The smaller circles represent the solvent molecules and their dipole moments. 20 Figure 2-2-2. Jablonski diagram for fluorescence with solvent relaxation. 21 Figure 2-3-1. The mechanism of dynamic quenching 22 Figure 2-3-2. The mechanism of static quenching. 23 Figure 2-3-3. Comparison of (a) dynamic and (b) static quenching. 24 Figure 2-3-4. The mechanism of combination of dynamic and static quenching of the same population of fluorophores 24 Figure 2-3-5. Dynamic and static quenching of the same population of fluorophores 25 Figure 2-4-1. The reabsorption processes 25 Figure 2-4-2. Schematic diagram for Förster and Dexter energy transfer. 27 Figure 2-4-3. The Förster type energy transfer 26 Figure 2-4-4. The Dexter type energy transfer 27 Figure 2-5-1. The classification of light-emitting structures 28 Figure 2-5-2. The structure of conjugated polymer light-emitting materials 29 Figure 2-6-1. Mechanism of Wittig reaction 33 Figure 2-6-2. Mechanism of Vilsmeier-Haack reaction 33 Figure 2-6-3. Mechanism of Suzuki coupling Reaction 34 Figure 3-3-1. The three electrode cell of the cyclic voltammetry 41 Figure 3-8-1. Diagram illustration of the evaporation system 54 Figure 3-8-2. PLED devices 54 Figure 4-1-1. 1H NMR spectrum of compound 1 60 Figure 4-1-2. 1H NMR spectrum of compound 2 61 Figure 4-1-3. 1H NMR spectrum of compound 3 61 Figure 4-1-4. 1H NMR spectrum of compound 4 62 Figure 4-1-5. 1H NMR spectrum of compound 5 62 Figure 4-1-6. 1H NMR spectrum of compound 6 63 Figure 4-1-7. 1H NMR spectrum of compound 7 63 Figure 4-1-8. 1H NMR spectrum of compound 8 64 Figure 4-1-9. 1H NMR spectrum of compound 9 64 Figure 4-1-10. 1H NMR spectrum of compound DC 65 Figure 4-1-11. 1H NMR spectrum of P0 65 Figure 4-1-12. 1H NMR spectrum of P1 66 Figure 4-2-1. Thermo-gravimetric curves of P0 and P1 at a heating rate of 10 oC/min under nitrogen. 69 Figure 4-2-2. Differential scanning calorimetric curves of P0 and P1 obtained from second scan at a heating rate of 10 oC/min. 69 Figure 4-3-1. Normalized absorption spectra and photoluminescence emission spectra of P0 (a) in CHCl3 solution (b) in the film state 71 Figure 4-3-2. Normalized absorption spectra and photoluminescence emission spectra of P1 (a) in CHCl3 solution (b) in the film state. 72 Figure 4-3-3. Normalized photoluminescence emission spectra of P0、P1 and DC in CHCl3 solution (1.0×10-5 M). 72 Figure 4-3-4. Absorption spectrum of P1 in various solvent. The concentration of P1 was fixed at 10-5 M 74 Figure 4-3-5. Fluoresence spectrum of P1 in various solvent. The concentration of P1 was fixed at 10-5 M 74 Figure 4-3-6. Absorption spectra of P1 with various metal ions in solution (THF/H2O = 9/1, v/v).The concentration of P1 and metal ions were fixed at 10-5 M and 10-4 M, respectively 76 Figure 4-3-7. Fluorescence spectra of P1 with various metal ions in solution (THF/H2O= 9/1, v/v).The concentration of P1 and metal ions were fixed at 10-5 M and 10-4 M, respectively. Excitation wavelength was 411 nm 77 Figure 4-3-8. Fluorescence emission response profile of P1 upon addition of various metal ions in solution (THF/H2O = 9/1, v/v). The concentration of P1 and metal ions were fixed at 10-5 M and 10-4 M, respectively. Excitation wavelength was 411 nm 77 Figure 4-3-9. Absorption spectra of P1 with various metal ions in solution (Ethanol/H2O = 9/1, v/v). The concentration of P1 and metal ions were fixed at 10-5 M and 10-4 M, respectively 78 Figure 4-3-10. Fluorescence spectra of P1 with various metal ions in solution (Ethanol/H2O = 9/1, v/v).The concentration of P1 and metal ions were fixed at 10-5 M and 10-4 M, respectively. Excitation wavelength was 407 nm 78 Figure 4-3-11. Fluorescence emission response profile of P1 upon addition of various metal ions in solution (Ethanol/H2O = 9/1, v/v). The concentration of P1 and metal ions were fixed at 10-5 M and 10-4 M, respectively. Excitationength was 407 nm 79 Figure 4-3-12. Mechanism of the interaction between P1 with Zn2+ 79 Figure 4-3-13. Absorption spectrum of various metal ions and fluorescence spectrum of P1 in solution (THF/H2O = 9/1, v/v). Excitation wavelength was 411 nm 80 Figure 4-3-14. Absorption spectrum of various metal ions and fluorescence spectrum of P1 in solution (Ethanol/H2O = 9/1, v/v). Excitation wavelength was 407 nm 81 Figure 4-3-15. Fluorescence spectra of P1 with varying concentration of Zn2+ in solution (THF/H2O = 9/1, v/v). The concentration of P1 was fixed at 10-5 M. Excitation wavelength was 411 nm 82 Figure 4-3-16. The Stern-Volmer plot of P1 with varying concentration of Zn2+ in solution (THF/H2O = 9/1, v/v). The concentration of P1 was fixed at 10-5 M. Excitation wavelength was 411 nm 82 Figure 4-3-17. Fluorescence spectra of P1 with varying concentration of Zn2+ in solution (Ethanol/H2O = 9/1, v/v). The concentration of P1 was fixed at 10-5 M. Excitation wavelength was 407 nm 83 Figure 4-3-18. The Stern-Volmer plot of P1 with varying concentration of Zn2+ in solution (Ethanol/H2O = 9/1, v/v). The concentration of P1 was fixed at 10-5 M. Excitation wavelength was 407 nm 83 Figure 4-3-19. Fluorescence spectra of P1 in solution (THF/H2O = 9/1, v/v). Quench by other metal ions (Li++ Na++ K++Ag++ Ca2++ Ba2++ Cu2++ Cd2++ Ni2++ Pb2++ Co2++ Fe2++ Fe3++ Al3++ Ru3+) with and without Zn2+.The concentration of P1 and metal ions were fixed at 10-5 M and 10-4 M,respectively. Excitation wavelength was 411 nm 85 Figure 4-3-20. Fluorescence spectra of P1 in solution (Ethanol/H2O = 9/1, v/v). Quench by other caions (Li++ Na++ K++Ag++ Ca2++ Ba2++ Cu2++ Cd2++Ni2++ Pb2++ Co2++ Fe2++ Fe3++ Al3++ Ru3+) with and without Zn2+.The concentration of P1 and metal ions were fixed at 10-5 M and 10-4 M, respectively. Excitation wavelength was 407 nm 86 Figure 4-3-21. Pictures of P1 in the presence of various metal ions and the target metal ions Zn2+. (Left image: only P1, middle image: P1+other caions, right image: P1+other cations+Zn2+)(a) THF/H2O = 9/1, v/v and (b) ethanol/H2O = 9/1, v/v 86 Figure 4-3-22. Fluorescence spectra of P1, P0 and DC with and without Zn2+ insolution (THF/H2O = 9/1, v/v) 87 Figure 4-3-23. Fluorescence spectra of P1 and DC with and without Zn2+ in solution (THF/H2O = 9/1, v/v) 88 Figure 4-4-1. Cyclic voltammogram of Ferrocene/Ferrocenium in 0.1 M n-Bu4NClO4, using glassy carbon as working electrode, scan rate: 100 mV/s. 90 Figure 4-4-2. Cyclic voltammogram of P0 and P1 in 0.1 M n-Bu4NClO4; scan rate: 100 mV/s 90 Figure 4-4-3 The energy level diagram of PF-Green-B and P1. 92 Figure 4-4-4. Brightness versus voltage characteristics of PLEDs with and without EIL. Device structure: ITO/PEDOT:PSS/PF-green-B/[ with/without EIL(P1)]/Al 94 Figure 4-4-5. Current density versus voltage characteristics of PLEDs with and without EIL. Device structure: ITO/PEDOT:PSS/PF-green-B/[ with/without EIL(P1) ]/Al 94 Figure 4-4-6. Current efficiency versus current density characteristics of PLEDs with and without EIL. Device structure: ITO/PEDOT:PSS /PF-green-B/[ with/without EIL(P1) ]/Al 95 Figure 4-4-7. Power efficiency versus current density characteristics with and without EIL. Device structure: ITO/PEDOT:PSS /PF-green-B/[ with/without EIL(P1) ]/Al 95 Figure 4-4-8. Brightness versus voltage characteristics of PLEDs with and without EIL. Device structure: ITO/PEDOT:PSS/PF-green-B/[ with/without EIL(P0) ]/Al 97 Figure 4-4-9. Current density versus voltage characteristics of PLEDs with and without EIL. Device structure: ITO/PEDOT:PSS/PF-green-B/[ with/without EIL(P0) ]/Al 97 Figure 4-4-10. Current efficiency versus current density characteristics of PLEDs with and without EIL. Device structure: ITO/PEDOT:PSS /PF-green-B/[ with/without EIL(P0) ]/Al 98 Figure 4-4-11. Power efficiency versus current density characteristics with and without EIL. Device structure: ITO/PEDOT:PSS /PF-green-B/[ with/without EIL(P0) ]/Al 98 Figure 4-4-12. Photovoltaic measurements of PLEDs with and without EIL (I-V Curve). Device structure: ITO/PEDOT:PSS/PF-Green-B/[ with/without EIL(P1) ]/Al(80 nm) 101 Figure 4-4-13. Photovoltaic measurements of PLEDs with and without EIL (I-V Curve). Device structure: ITO/PEDOT:PSS/PF-Green-B/[ with/without EIL(P0) ]/Al(80 nm) . 101 Figure 4-4-14. (a) AFM images of PF-Green-B film on top of PEDOT:PSS layer. (b) AFM images of P1 film on top of PF-Green-B layer. 103 Figure 4-4-15. Illustration of proposed link between P1 with Cs+ 105

    1. R. H. Patridge, Polymer, 24, 733 (1983).
    2. J. H. Burrououghes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539 (1990).
    3. D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
    4. D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev., 100, 2537 (2000).
    5. J. W. Lee, H. S. Jung, P. S. Kwon, J. W. Kim, R. A. Bartsch, Y. Kim, S. J. Kim, J. S. Kim, Org. Lett., 10, 3801 (2008).
    6. A. W. Czarnik, Supramolecular Chemistry, Fluorescence, and Sensing. Fluorescent Chemosensors for Ion and Molecule Recognition, American Chemical Society, 538, 1-9 (1993).
    7. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev., 97, 1515 (1997).
    8. K. Cammann, U. Lemke, A. Rohen, J. Sander, H. Wilken, B.Winter, Angew. Chem .Int. Ed., 30, 516 (1991).
    9. B. Valeur, Probe design and chemical sensing. Top. Fluoresc. Spectrosc., 4, 21 (1994).
    10. R. Abbel, A. P. H. J. Schenning, E. W. Meijer, J. Polym. Sci., Part A: Polym. Chem. 47, 4215 (2009).
    11. G. W. Gokel, W. M. Leevy, M. E. Weber, Chem. Rev., 104, 2723 (2004).
    12. L. C. Clark, C. Lyons, N. Y. Ann, Acad. Sci., 102, 29 (1962).
    13. 吳知易,陳雲,國立成功大學化學工程研究所博士論文 (2005).
    14. A. Angeli, Gazz. Chim. Ital., 46, 279 (1916).
    15. A. F. Diaz, K. K. Kanazawa, G. P. Gardini, J. Chem. Soc. Chem. Commun., 635 (1979).
    16. 蕭如娟,科儀新知,P.65 (1988).
    17. D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1990).
    18. T. Ajn, S. Y. Song, H. Ku, Macromolecules., 33, 6764 (2000).
    19. A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu,E. P. Woo, Appl. Phy. Lett., 73, 629 (1998).
    20. G. Hughes, M. R. Bryce, J. Mater. Chem., 15, 94 (2005).
    21. H. B. Layrent, A. Castellan, M. Daney, J. P. Desvergne, G. Guinand, P. Marsau, M. H. Riffaud, J. Am. Chem. Soc., 108, 315 (1986).
    22. B. Valeur, I. Leray, Coord. Chem. Rev., 205, 3 (2000).
    23. R. Bergonzi, L. Fabbrizzi, M. Licchelli, C. Mangano, Coord. Chem. Rev. 170, 31 (1998).
    24. J. R. Lakowicz. Principles of fluorescence spectroscopy, 2nd ed, Plenum Publishers, New York., 13 (1999).
    25. 黃孝文,陳雲,化工資訊月刊,第15卷第3期,P.8 (2001).
    26. 葉昆明,陳雲,科學發展,第385期,P.58 (2005).
    27. 陳信宏,陳雲,中工高雄會刊,第3期,P.72 (2006).
    28. 楊素華,光訊雜誌,第98 期,P.29 (2002).
    29. S. H. Mashraqui, S. Sundaram, T. Khana, A. C. Bhasikuttanb, Tetrahedron Lett., 63, 11093 (2007).
    30. T. Emiliano, K. Arna, M. S. Lisa, H. T. Matthew, W. Michael, Inorg. Chem., 48, 319 (2009).
    31. N. Julius, B. Anamitro, Tetrahedron Lett., 48, 7316 (2007).
    32. A. L. Bush, Trends Neurosci., 26, 207 (2003).
    33. S. J. Lippard, J. M. Berg, Principles of Bioinorganic Chemistry, University Science Books: Mill Valley (1994).
    34. M. Hambidge, R. J. Cousins, R. B. Costello, J. Nutr., 130, 1341 (2000).
    35. M. P. Cuajungco, G. Lees, J. Brain Res., 23, 219 (1997).
    36. Z. Linna , Y. Chuluo, C. Zhong, L. Xu, Q. Jingui, Polymer, 49, 3716 (2008).
    37. Z. Xianfeng, S. Fengyu, T. Yanqing, Y. B. Cody, H. J. Roger, R. M. Deirdre, J. Am. Chem. Soc., 133, 18530 (2011).
    38. I. M. Vladimir, D. D. Alexander,A. B. Vladimir, V. T. Alexey, ARKIVOC, iv, 90 (2008).
    39. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis. In 5th ed., chapter 15 (1998).
    40. J. R. Lakowicz, Solvent and Evironmental Effects. Principles of Fluorescence Spectroscopy, 3rd ed., chapter 6 (2006).
    41. J. R. Lakowicz, Solvent and Evironmental Effects. Principles of Fluorescence Spectroscopy, 3rd ed., chapter 8 (2006).
    42. Z. H. Kafafi, Organic Electroluminescence, US Naval Research Lab, Washington, DC, USA (2005).
    43. V. May, O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems. In 2nd ed., chapter 8 (2003).
    44. S. H. Chen, The Synthesis and Optoelectronic Properties of Electroluminescent Polymers Consisting of Hole- and Electron-Transporting Segments. Doctoral Dissertation, National Cheng Kung University (2006).
    45. G. L. Closs, M. D. Johnson, J. R. Miller, P. Piotrowiak, J. Am. Chem. Soc., 111, 3751 (1989).
    46. http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Fundamentals/Dexter_Energy_Transfer.
    47. J. L. Segura, Acta Polymerica 49, 319 (1998).
    48. J. J. M. Halls, C. A. Walsh, N. C. Greenham, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, Nature, 376, 498 (1995).
    49. Y. Yang, A. J. Heeger, Nature, 374, 539 (1990).
    50. H. A. M. van Mullekom, J. A. J. M. Vekemans, E. E. Havinga, E. W.Meijer, Mater. Sci. Eng., 32, 1 (2001).
    51. A. J. Heeger, J. Phys. Chem. B, 105, 8475 (2001).
    52. M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Nature, 409, 494 (2001).
    53. G. G. Malliaras, J. C. Scott, ibib, 83, 5399 (1998).
    54. T. Wakimoto, Y. Fujihira, K. Nagayama, A. Yokoi, H. Nakada, M. Tsuchida, IEEE Trans. Electron. Devices, 44, 1245 (1997).
    55. C. Ganzorig, K. Suga, M. Fujihira, Mater. Sci. Eng., B85, 140 (2001).
    56. C. Ganzorig, M. Fujihira, Appl. Phys. Lett., 85, 4774 (2004).
    57. M. Stobel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, A. Winnacker, Appl. Phys. Lett., 76, 115 (2000).
    58. T. H. Lee, J. C. A. Huang, T. F. Guo, T. C. Wen,Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin, Y. J. Hsu, Adv. Funct. Mater., 16, 3036 (2008).
    59. M. W. Lin, C. T. Wen, Y. J. Hsu. T. F. Guo, J. Mater. Chem., 21, 18840 (2011).
    60. F. Huang, Y. H. Niu, Y. Zhang, J. W. Ka, Michelle S. Liu, Alex K.-Y. Jen, Adv. Mater., 19, 2010 (2007).
    61. X. Xu, B. Han, J. Chen, J. Peng, H. Wu, Y. Cao, Macromolecules, 44, 4204 (2011).
    62. F. Huang, P. I. Shih, C. F. Shu, Y. Chi, Alex K.-Y. Jen, Adv. Mater., 21, 361 (2009).
    63. H. H. Lu, Y. S. Ma, N. J. Yang, G. H. Lin, Y. C. Wu, S. A. Chen, J. Am. Chem. Soc., 133, 9634 (2011).
    64. S. H. Oh, D. Vak, S. I. Na, T. W. Lee, D. Y. Kim, Adv. Mater., 20, 1624 (2008).
    65. Lawrence, N. J., The Wittig Reactions and Related Methods in Preparation of Alkenes: A Practical Approach. In Willians, J. M. J., Ed. Oxford University Press: New York (1996).
    66. O. Meth-Cohn, S. P. Stanforth, Comprehensive Organic Synthesis (B. M. Trost, I. Fleming, Eds.), Pergamon Press: Oxford, chapter 3-5 (1991).
    67. N. Miyaura, A. Suzuki, Chem. Rev., 95, 2457 (1995).
    68. M. Yuan, Y. Li, J. Li, C. Li, X. Liu, J. Lv, J. Xu, H. Liu, S. Wang, D. Zhu, Org. Lett., 9, 2313 (2007).
    69. J.F. Le´tard, R. Lapouyade, W. Rettig, Pure Appl. Chem., 65, 1705 (1993).
    70. T. Bernius, M. Inbasekaran, J. O’Brien, W. Wu, Adv. Mater., 12, 1737 (2000).
    71. C. C. Huang, H. F. Meng, G. K. Ho, C. H. Chen, C. S. Hsu, Appl. Phys. Lett., 84, 1195 (2004).
    72. H. H. Lu, Y. S. Ma, N. J. Yang, G. H. Lin, Y. C. Wu, S. A. Chen, J. Am. Chem. Soc., 133, 9634 (2011).

    下載圖示 校內:2017-08-08公開
    校外:2017-08-08公開
    QR CODE