| 研究生: |
莊梓弘 Chuang, Tzu-Hung |
|---|---|
| 論文名稱: |
赤箭種類中真菌組成之描述 Characterization of fungal compositions in Gastrodia species |
| 指導教授: |
劉宗霖
Liu, Tsung-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 蘭科 、赤箭 、共生真菌 |
| 外文關鍵詞: | orchid, Gastrodia, symbiotic fungi |
| 相關次數: | 點閱:70 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
赤箭為特殊的無葉綠素蘭科植物,須依賴共生真菌提供養分來生存,因此我們預期赤箭的空間分布會受到環境中真菌種類的限制。雖然有這層限制,卻有部分赤箭能生長於不同環境中。基於赤箭對真菌的依賴性,我們推測能適應不同的環境真菌組成最有可能與赤箭能否廣泛分佈有關。在過去僅發現分布較侷限且稀有的赤箭具有特異共生的單一優勢共生真菌,卻沒有關於廣泛分佈赤箭相關的真菌研究。於本次研究中,我們取廣泛分佈的爪哇赤箭與稀有分布的夏赤箭,藉由Illumina定序其根部以及周圍土壤中的所有28S DNA,由此定序資料做物種鑑定與樣本間真菌組成差異的比較。我們使用28S定序資料比對回NCBI LSU資料庫後,鑑定出夏赤箭植株中以Mycena為優勢物種;與此相對,爪哇赤箭植株則以多樣的真菌存在於根內為特徵,且沒有明顯的優勢物種。爪哇赤箭植株的多樣性皆高於夏赤箭。於進一步追蹤後,我們證實爪哇赤箭根部內的真菌菌相會受到其周圍土壤真菌所影響,且相對於夏赤箭根部與土壤真菌組成而言,我們發現爪哇赤箭的根部與土壤的真菌菌組成關係確實相對類似。這些證據說明爪哇赤箭能夠讓更多土壤真菌較無限制的進入根內,並且對於真菌的選擇較不挑剔。這些現象也能解釋兩種赤箭分布範圍的差異狀況。
Gastrodia is a special chlorophyll lacking plant and relies on specific symbiotic fungi for nutrients. Therefore, environmental fungi can limit the spatial distribution of Gastrodia. Under this constraint, however, some Gastrodia species are still widely distributed. We hypothesize that symbiotic fungal composition is an important factor for a Gastrodia specie to be widespread or endemic. It has been reported that only few specific fungi are present in endemic Gastrodia species, e.g., elata and flavilabella. However, there is still no report about fungi in widespread Gastrodia species. In this study, we collected two Gastrodia species, widespread Gastrodia javanica and endemic Gastrodia flavilabella. After extracting total DNAs from tubers and soils of the two Gastrodia species, 28S rDNA sequencing was applied for species identification. We found that Mycena dominated in the tubers of G. flavilabella while different fungi lived in the tubers of G. javanica. Consistently, fungal diversity was higher in the G. javanica tubers than in the G. flavilabella tubers. In addition, dominating fungi in different G. javanica individuals were different. This suggests that the widespread G. javanica is less limited by specific symbiotic fungi.
1. XJ-t, G.S.-x., Action and relation of the seed Germination of Orchidaceae. Chinese Bulletin of Botany, 1990. 7(1): p. 13-17.
2. Rasmussen, H.N., Terrestrial Orchids. 1995: Cambridge University Press.
3. Swarts, N.D., et al., Ecological specialization in mycorrhizal symbiosis leads to rarity in an endangered orchid. Mol Ecol, 2010. 19(15): p. 3226-42.
4. Leake, J.R., The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytologist, 1994. 127(2): p. 171-216.
5. Leake, J.R., Myco-heterotroph/epiparasitic plant interactions with ectomycorrhizal and arbuscular mycorrhizal fungi. Current Opinion in Plant Biology, 2004. 7(4): p. 422-428.
6. Merckx, V., M.I. Bidartondo, and N.A. Hynson, Myco-heterotrophy: when fungi host plants. Annals of Botany, 2009. 104(7): p. 1255-1261.
7. Selosse, M.-A., et al., Saprotrophic fungal mycorrhizal symbionts in achlorophyllous orchids: Finding treasures among the ‘molecular scraps’? Plant Signaling & Behavior, 2010. 5(4): p. 349-353.
8. Fan, L., S. Guo, and J. Xu, Interaction between protocorms of Gastrodia elata (Orchidaceae) and Mycena dendrobii in symbiotic germination. Jun wu xi tong = Mycosystema / Zhongguo ke xue yuan Wei sheng wu yan jiu suo. Zhongguo jun wu xue hui zhu ban, 1999. 18(2): p. 219-225.
9. Kim, Y.-I., et al., Seed Germination of Gastrodia elata Using Symbiotic Fungi, Mycena osmundicola. Mycobiology, 2006. 34(2): p. 79-82.
10. Xu, J., et al., Symbiotic germination between Gastrodia elata and fungal species of Mycena. Jun wu xi tong = Mycosystema / Zhongguo ke xue yuan Wei sheng wu yan jiu suo. Zhongguo jun wu xue hui zhu ban, 2001. 20(1): p. 137-141.
11. Cha, J.Y. and T. Igarashi, Armillaria species associated with Gastrodia elata in Japan. European Journal of Forest Pathology, 1995. 25(6-7): p. 319-326.
12. Sekizaki, H., et al., Identification of Armillaria nabsnona in Gastrodia Tubers. Biological and Pharmaceutical Bulletin, 2008. 31(7): p. 1410-1414.
13. Liu, T., et al., Highly diversified fungi are associated with the achlorophyllous orchid Gastrodia flavilabella. BMC Genomics, 2015. 16: p. 185.
14. Lok, A.F.S.L.A., W. F.; Tan, H. T. W, THE STATUS OF GASTRODIA JAVANICA (BL.) LINDL. IN SINGAPORE. NATURE IN SINGAPORE, 2009. 2: p. 415-419.
15. Xinqi, C.G., Stephan W.; Cribb, Phillip J., GASTRODIA R. Brown, Prodr. 330. 1810. Flora of China, 2009. 25: p. 201-205.
16. Ogura-Tsujita, Y. and T. Yukawa, High mycorrhizal specificity in a widespread mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). Am J Bot, 2008. 95(1): p. 93-7.
17. Denison, R.F. and E.T. Kiers, Life histories of symbiotic rhizobia and mycorrhizal fungi. Curr Biol, 2011. 21(18): p. R775-85.
18. Marks, G.C., Ectomycorrhizae: Their ecology and physiology. 2012: Elsevier Science.
19. Cox, K.D., et al., Gastrodia anti-fungal protein from the orchid Gastrodia elata confers disease resistance to root pathogens in transgenic tobacco. Planta, 2006. 224(6): p. 1373-1383.
20. Gardes, M. and T.D. Bruns, ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 1993. 2(2): p. 113-118.
21. Murray, M.G. and W.F. Thompson, Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980. 8(19): p. 4321-4326.
22. Altschul, S.F., et al., Basic Local Alignment Search Tool. Journal of Molecular Biology, 1990. 215(3): p. 403-410.
23. Magoc, T. and S.L. Salzberg, FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011. 27(21): p. 2957-2963.
24. Morgulis, A., et al., Database indexing for production MegaBLAST searches. Bioinformatics, 2008. 24(16): p. 1757-1764.
25. Edgar, R.C., UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 2013. 10(10): p. 996-8.
26. Hamady, M., C. Lozupone, and R. Knight, Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J, 2010. 4(1): p. 17-27.
27. Huerta-Cepas, J., F. Serra, and P. Bork, ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Molecular Biology and Evolution, 2016.
28. Sievers, F., et al., Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 2011. 7(1).
29. Morris, E.K., et al., Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution, 2014. 4(18): p. 3514-3524.
30. Shannon, C.E., A Mathematical Theory of Communication. 1948. 27(3): p. 379 - 423.
31. Toledo, A.V., M.E. Simurro, and P.A. Balatti, Morphological and molecular characterization of a fungus, Hirsutella sp., isolated from planthoppers and psocids in Argentina. Journal of Insect Science, 2013. 13(1).