簡易檢索 / 詳目顯示

研究生: 張均旭
Chang, Chun-Hsu
論文名稱: 具超疏水表面之矩形截面流道減阻研究
Drag Reduction of Rectangular Duct Flow with Superhydrophobic Surface
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 104
中文關鍵詞: 反自然蓮花結構超疏水表面減阻效應高寬比二次流
外文關鍵詞: negative lotus structure, superhydrophobic surface, drag reduction, aspect ratio, secondary flow
相關次數: 點閱:144下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於以數值方法研究在矩形截面流道中佈置反自然蓮葉結構之超疏水表面減阻效應。在計算中我們以下列方式模擬該超疏水表面:液氣界面設為平滑之零剪力區域,固液界面則設為無滑移區域。藉由改變高寬比與零剪力面積比例Fc,探討其阻力係數與雷諾數乘積fRe之變化,並且對這些流場作進一步之分析。

    研究結果顯示,不同Fc之流道在相同高寬比下減阻效應隨Fc遞增;而在相同Fc下,減阻效應並沒有與高寬比有線性關係。由Fc=0.5與Fc=0.9之流場分析可知流體流經零剪力區域時,速度受到會週期壓力變化所產生之助力與阻力而有先升後降之變化。進一步分析流場會發現造成週期壓力梯度變化是由於流道中形成二次流,亦即促使流體偏離主要流動方向所形成之側向流動現象。透過二次流分析,可以知道高寬比極低(10-2)之流道中,因為流體皆朝向主要流動方向流動,較不會有二次流現象之存在,超疏水表面對於流體而言較能夠完全產生減阻之效應;而在高寬比較低(0.05~0.3)之流道中,二次流現象隨著高寬比增加而有大幅度增加,減阻效應在此會大幅度下降;在高寬比較大(0.3~1)之流道中,二次流強度變化漸緩,不再隨著流道高寬比增加而大幅度增加,故減阻效應並不明顯。

    The purpose of this work is to study numerically the drag reduction in rectangular duct flow with superhydrophobic surface, which is produced by manufacturing “negative lotus structure” on the surface. In the numerical calculations herein, we simulate the superhydrophobic surface in the following way: the liquid–gas interface in the surface structure is set as a shear-free planar surface, and the solid–liquid interface as a no-slip surface. By varying the aspect ratio (AR) of the duct cross-section and the proportion (Fc) of the surface area that has zero shear, we investigate the corresponding variation of the fRe product (f being the friction factor of the duct flow, and Re the Reynolds number) in fully-developed flow, and analyze the flow field in detail.

    The results show that, typically, the extent of drag reduction increases with Fc for a fixed AR of the duct. Also, for a given Fc, the drag reduction extent depends nonlinearly on AR. From the flow field analysis for Fc = 0.5 and Fc = 0.9, we discover that when the liquid flow passes through the shear-free region, its velocity will first increase and then decrease, accompanied with a periodic variation in the otherwise constant pressure gradient. Moreover, the flow-field analysis suggests that the periodic variation of the pressure gradient is associated with a secondary flow that causes the fluid to deviate from the main current direction in the duct. When the duct has an extremely low AR (say 10-2), there is no significant secondary flow, and the superhydrophobic surface produces significant drag reduction. For AR in the range of about 0.05~0.3, the secondary flow would increases in magnitude with increasing AR, therefore reducing the extent of drag reduction. At even larger AR (in the range of about 0.3~1), the magnitude of the secondary flow does not change much, and the drag reduction effect produced by the surface pattern also becomes less significant.

    中文摘要 I Abstract II 致謝 III 目錄 V 表目錄 IX 圖目錄 XI 符號說明 XV 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 研究背景與文獻回顧 5 1-3-1 減阻技術 5 1-3-2 近期微流道減阻之實驗與數值計算文獻回顧 6 1-3-3 反自然蓮花結構與空氣彈簧效應 12 1-4 本文架構 13 第二章 研究方法 15 2-1 完全發展流之微分方程與邊界條件 15 2-2 矩形截面流道fRe阻力曲線 18 2-3 流道模型建立 25 2-3-1 矩形截面流道設計 25 2-3-2 無因次參數 28 2-3-3 基本假設 30 2-3-4 統御方程式 31 2-3-5 邊界條件 32 2-4 數值方法 36 2-4-1 控制體積法與交錯式格點 37 2-4-2 有限差分法 38 2-4-3 動量方程式離散 39 2-4-4 壓力修正方程式 39 2-4-5 收斂條件 42 第三章 結果與討論 45 3-1 網格獨立測試 45 3-2 fRe阻力曲線之文獻比對 50 3-3 不同高寬比與不同滑移範圍比例之fRe阻力曲線 53 3-4 Fc=0.9與Fc=0.5阻力曲線探討 56 3-4-1 單位超疏水結構中心斷面流線分佈 56 3-4-2 主要流動方向之斷面速度向量分佈 62 3-4-3 單位超疏水結構底面中心線上之速度與壓力分佈 68 3-5 二次流對超疏水表面減阻效應之影響 73 3-5-1 主要流動方向之斷面上二次流分佈 73 3-5-2 二次流對流道高寬比之影響 85 3-5-3 二次流對流道減阻效應之影響 89 3-6 超疏水結構排列位置對減阻效應之影響 92 第四章 結論與建議 97 4-1 結論 97 4-2 未來研究方向與建議 99 參考文獻 101

    [ 1 ] Barthlott, W. and Neinhuis, C. “Characterization and distribution of
    water-repellent, self-cleaning plant surfaces”. Annals of Botany, Vol. 79, pp.
    667-677 (1997).
    [ 2 ] Ball, P. “Engineering Shark Skin and Other Solutions”. Nature 400,
    507(1999).
    [3] Wenzel, R. "Resistance of solid surfaces to wetting by water". Industrial &
    Engineering Chemistry 28, 988-994 (1936).
    [4] Wenzel, R. "Surface Roughness and Contact Angle". The Journal of Physical
    Chemistry 53, 1466-1467 (1949)
    [5] Cassie, A. "Contact angles". Discussions of the Faraday Society 3, 11-16
    (1948).
    [6] Cassie, A. & Baxter, S. "Wettability of porous surfaces". Transactions of the
    Faraday Society 40, 546-551 (1944).
    [7] 廖士貴, 國立成功大學機械工程學系碩士論文(2010)
    [8] Kramer, M.O., “The dolphins’ secret,” Journal of the American Society, Vol.
    72, pp. 25-33 (1961)
    [9] Pavlov, V.V., “Dolphin skin as a natural anisotropic compliant wall,”
    Bioinspiration and Biomimetics, Vol. 1, pp. 31-40 (2006).
    [10] Walsh, M.J., “Turbulent boundary layer drag reduction using riblets,” 20th
    AIAA Aerospace Sciences Meeting, Orlando, FL (1982).
    [11] Bechert, D.W., Hoppe, G., and Reif, W.-E., “On the drag reduction of the
    shark skin,” AIAA Shear Flow Conference, Boulder, Colorado (1985).
    [12] Wilkinson, S.P., and Lazos, B.S., “Turbulent viscous drag reduction with
    thin-element riblets,” AIAA Journal, Vol. 26, pp. 496-498 (1988).
    [13] Liu, K.N., Christodoulou, C., Riccius, O., and Joseph, D.D., “Drag
    reduction in pipes lined with riblets,” AIAA Journal, Vol. 28, pp. 1697-1698(1990).
    [14] Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L.,
    and Zhu, D., “Super-hydrophobic surfaces: from natural to artificial,” Advanced
    Materials, Vol. 14, pp. 1857-1860 (2002).
    [15] Byun, D., Kim, J., Ko, H.S., and Park, H.C., “Direct measurement of slip
    flows in superhydrophobic microchannels with transverse grooves,” Physics of
    Fluids, Vol. 20, 113601 (2008).
    [16] Ou, J. and Rothstein, J. P., “Direct velocity measurements of the flow
    pastdrag-reducing ultrahydrophobic surfaces”. Phys. Fluids 17, 103606(2005).
    [17] Steinberger, A., Cecile, C.B., Kleimann, P. and Charlaix, E., “High friction
    on a bubble mattress”. Nature Materials, Vol. 6, pp. 665-668(2007)
    [18] Byun, D., Saputra, and Park, H. C., “Drag Reduction on Micro-Structured
    Super-hydrophobic Surface”. IEEE, 1-4244-0570-X, pp.818-823(2006)
    [19] Tsai, P., Peters, A. M., Pirat, C., Wessling, M., Lammertink, R. G. H. and
    Lohse D., “Quantifying effective slip length over micropatterned hydrophobic
    surfaces”. Physics of Fluids 21, 112002(2009)
    [20] Philip, J. R., “Flows satisfying mixed no-slip and no-shear conditions”. Z.
    Angew. Math. Phys. 23, 353(1972)
    [21] Philip, J. R., “Integral properties of flows satisfying mixed no-slip and
    no-shear conditions”. Z. Angew. Math. Phys. 23, 960(1972)
    [22] Davies, J., Maynes, D., Webb, B. W., and Woolford, B., “Laminar flow in a
    microchannel with super-hydrophobic walls exhibiting transverse ribs”. Phys.
    Fluids 18, 087110(2006)
    [ 23 ] Ou, J., Perot, B. and Rothstein, J. P., “Laminar drag reduction in
    microchannels using ultrahydrophobic surfaces”. Phys. Fluids 16, 4635(2004).
    [ 24 ] Watanabe, K., Udagawa, Y. and Udagawa, H., “Drag reduction of
    Newtonian fluid in a circular pipe with a highly water-repellent wall”. J. Fluid
    Mech. 381, 225(1999)
    [25] Lauga, E. and Stone, H., “Effective slip in pressure-driven Stokes flow”. J. Fluid Mech. 489, 55(2003)
    [26] Maynes, D., Jeffs, K. , Woolford, B. and Webb B. W., “Laminar Flow in a
    microchannel with hydrophobic surface patterned microribs oriented parallel to
    the flow direction”. Physics of Fluids 19, 093603(2007)
    [27] Cheng, Y. P., Teo, C. J. and Khoo, B. C., “Microchannel flow with
    superhydrophobic surfaces: Effects of Reynolds number and pattern width to
    channel height ratio”. Phys. Fluids 21, 122004 (2009)
    [28] Davies, J., Maynes, D., Webb, B. W., and Woolford, B., “Laminar flow in a
    microchannel with super-hydrophobic walls exhibiting transverse ribs”. Phys.
    Fluids 18, 087110(2006)
    [29] Rothstein, J. P. and Ou, J., “Direct velocity measurements of the flow past
    drag-reducing ultrahydrophobic surfaces”. Phys. Fluids 17, 103606(2005)
    [30] Teo, C. J. and Khoo, B. C., “Analysis of Stokes flow in microchannels with
    superhydrophobic surfaces containing a periodic array of micro-grooves”.
    Microfluid. Nanofluid. 7, 353(2009)
    [31] Ybert, C., Barentine, C., Cottin-Bizonne, C., Joseph, P., and Bocquet, L.,
    “Achieving large slip with superhydrophobic surfaces: Scaling laws for generic
    geometries”. Phys. Fluids 19, 123601(2007)
    [32] Lee, C., Choi, C. H., and Kim, C. J., “Structured surfaces for a giant liquid
    slip”. Phys. Rev. Lett. 101, 064501(2008)
    [33] Bico, J. C., Marzolin, and Quéré, D., “Pearl drop.” Europhys. Lett. , vol. 47,
    no. 2, pp.220-226(1999)
    [34] Extrand, C.W., “Model for contact angles and hysteresis on rough and
    ultraphobic surface”. Langmuir, vol.18, 7991-7999(2002)
    [35] Shah, R. K., and London, A. L., “Laminar Flow Forced Convection in
    Ducts”. Academic, New York(1978)
    [36] Holmes, D. B., and Vermeulen, J. R., “Velocity profiles in ducts with
    rectangular cross section”. Chem. Eng. Sci. 23, 717-722(1968)
    [37] Muchnik, G. F., Solomonov, S. D., and Gordon, A. R., “Hydrodynamic development of a laminar velocity field in rectangular channels”. J. Eng. Phys.
    (USSR) 25, 1268-1271(1973)
    [38] Purday, H. F. P., “Streamline Flow”. Constable, London, 1949; same as “An
    Introduction to the Mechanics of Viscous Flow”. Dover, New York(1949)
    [39] Natarajan, N. M., and Lakshmanan S. M., “Laminar flow in rectangular
    ducts: Prediction of velocity profiles and friction factor”. Indian J. Technol. 10,
    435-438(1972)
    [40] Lundgren, T. S., and Sparrow, E. M., and Starr, J. B., “Pressure drop due to
    the entrance region in ducts of arbitrary cross section”. J. Basic Eng. 86,
    620-626(1964)
    [41] Shah, R. K. and London, A. L., “Laminar Flow Forced Convection Heat
    Transfer and Flow Friction in Straight and Curved Ducts-A Summary of
    Analytical Solutions”. TR NO. 75 Dep. Mech. Eng., Stanford University,
    Stanford, California(1971)
    [42] Shih, F. S., “Laminar flow in axisymmetric conduits by a rational approach”.
    Can. J. Chem, Eng. 45, 285-294(1967)
    [43] Rothfus, R. R., Kermode, R. I., and Hackworth, J. H., “Pressure drop in
    rectangular ducts”. Chem. Eng. (New York) 71 (Dec. 7), 175-176(1964)
    [44] Tirunarayanan, M. A., and Ramachandran, A., “Correlation of isothermal
    pressure drop in rectangular ducts”. Proc. Australas. Conf. hydraul. Fluid Mech.,
    2nd, University of Auckland, pp. A213-230(1965)
    [45] Tirunarayanan, M. A., and Ramachandran, A., “Frictional pressure drop in
    laminar and turbulent flow in isosceles-triangular ducts”. Am. Soc. Mech. Eng.,
    Pap. 67-Fe-18(1967)
    [46] Natarajan, N. M., and Lakshmanan S. M., “Analytical method for the
    determination of the pressure drop in rectangular ducts”. Indian Chem. Eng.
    12(2), 68-69(1970)
    [47] Patankar, S.V., “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill,
    New York(1981).

    下載圖示 校內:2014-08-27公開
    校外:2017-08-27公開
    QR CODE