| 研究生: |
張家豪 Chang, Chia-hao |
|---|---|
| 論文名稱: |
無鉛Sn-Zn-Bi系合金之Zn與Bi含量最佳化探討 Optimization of the Zn and Bi content on Lead-Free Sn-Zn-Bi Alloys |
| 指導教授: |
陳立輝
Chen, Li-hui 呂傳盛 Lui, Truan-sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | Sn-Zn-Bi合金 、Sn-Zn合金 |
| 外文關鍵詞: | Sn-Zn-Bi alloys, Sn-Zn alloys |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無鉛錫合金系統主要是應用在電子封裝產業,Sn-Zn中添加過量的Zn元素與Bi元素會使延展性下降,低延展性對於電子封裝產業有不好的影響,所以對於高Zn與高Bi含量之研究,仍屬缺乏。但是低延展性可以應用在製作精密鑄造微晶蠟成型模具。本研究主要進行高Zn與高Bi含量的Sn-xZn ( x = 14, 17, 20, 23, 26 wt.% )二元合金系統、Sn-9Zn-11Bi與Sn-yZn-zBi ( y = 20, 23, 26 wt.%,z = 8, 11 wt.% )合金系統之機械性質探討,主要著重在高Zn含量與高Bi含量之顯微組織、凝固行為、導電、斷屑及拉伸機械性質之探討。由於金屬的熱傳性質與導電性質相似,因此本研究測量導電係數來評估金屬的熱傳性質。
實驗結果顯示,Sn-xZn合金中,Zn含量的增加會提升Zn-rich相面積率,降低延展性,對抗拉強度值沒有明顯的影響。其中高Zn含量之固液共存時間與熔點較低Zn含量高。
Sn-yZn-zBi系統中,Bi含量效應:增加Bi含量會提升Zn-rich相面積率;降低熔點與延展性,但是再添加過多的Bi含量,對於延展性沒有明顯的影響;導電係數與抗拉強度值沒有明顯的影響,其中Sn-26Zn-xBi系統添加過量的Bi會使抗拉強度值降低。Zn含量效應與Sn-Zn二元系統相似:增加Zn含量會提升Zn-rich相面積率、斷屑性質、降伏強度與抗拉強度;對延展性沒有明顯的影響,因為Sn-Zn-Bi合金材料的延展性皆在4%以下,其中值得一提的是低Zn高Bi含量的Sn-9Zn-11Bi之延展性為零;熔點與固液共存時間沒有明顯的影響,其中Sn-yZn-11Bi系統增加Zn含量會使熔點下降。
The lead-free stannum system is mainly applied in the electronic packaging industry. The ductility is decreased when the excessive Zn and Bi content is assed in the Sn-Zn binary alloys, and low ductility is detrimental to the electronic seal industry. The influence of high Zn and Bi elements content is still unknown. However, the low ductility property may be available in manufacturing precision casting wax molding mold. In this study, the influence of high Zn and Bi content in Sn-xZn (x = 14, 17, 20, 23, 26 wt.%) binary alloys system, Sn-9Zn-11Bi and Sn-yZn-zBi (y = 20, 23, 26 wt.%, z = 8, 11 wt.%) ternary alloys system on microstructures, coagulation behaviors, electric conduction, chip breaking and the stretching mechanical property are investigated. Because the thermal conduction and the electric conduction are similarly in metals, this research measures the electric conductivity to estimate the thermal conduction.
The experimental results show that the Zn-rich area fraction is increased, whereas the ductility is decreased with Zn content in the Sn-xZn binary alloys system. There is no obvious influence on the tensile strength. The liquid-solid coexistence interval and the melting point of high Zn content specimens is better than the low Zn content specimens.
The Zn-rich area fraction is increased, whereas the melting point and the ductility are decreased with increasing Bi content in the Sn-yZn-zBi trinary alloys system. There is no more obvious influence on the elongation, electric conduction and tensile strength when increasing more Bi content. But the tensile strength is decreased with adding excessively Bi content in the Sn-26Zn-xBi system.
The Zn-rich area rate, chip breaking property, and tensile strength are increased with increasing Zn content in the Sn-yZn-zBi trinary alloys system. Because the ductility of all the Sn-yZn-zBi alloys below 4%, it has no obvious influence on ductility. It should be noted that the ductility is zero for the low Zn-content, high Bi-content of Sn-9Zn-11Bi alloy. It has no obvious influence on the liquid-solid coexistence interval and melting point, but the melting point is decreased with increasing Zn content in Sn-yZn-11Bi system.
1.張淑如,『鉛對人體的危害』,勞工安全衛生簡訊,民國84年,第12期,17-18頁。
2.張亞倫,『Sn-Bi及Sn-Zn系無鉛銲錫振動破壞之Bi含量效應探討』,國立成功大學材料科學及工程學系,碩士論文,民國93年,92學年度,34-35頁。
3.J. Zhou, P. Li, Y. Xiao and X. Fu, "Microstructure and Deformability of Sn-Zn-Bi Alloys", Electronics Packaging Technology, 7th International Conference , 2006, pp. 1-5
4.賴玄金,『從IPC Work’99 會議中看無鉛銲錫電子構裝之應用現況與發展趨勢』,工業材料,民國89年,第158期,99-107頁。
5.P. T. Vianco and D. R. Frear, "Issues in the Replacement of Lead-Bearing Solder Alloys", Circuits Assembly, Vol. 6, 1995 , pp. 46-48.
6.J. M. Song, T. S. Lui, Y. L. Chang, and L. H. Chen, "Compositional Efforts on the Microstructure and Vibration Fracture Properties of Sn-Zn-Bi Alloys", Journal of Alloys and Compounds, Vol. 403, 2005, pp. 191-196.
7.S. W. Chen, C. H. Wang, S. K. Lin, and C. N. Chiu, "Phase Diagrams of Pb-Free Solders and Their Related Materials Systems", Mater Electron, Vol. 18, 2007, pp. 19-37
8.J. Vizdal, M. H. Braga, A. Kroupa, K. W. Richter, D. Soares, L. F. Malheiros, and J.Ferreira, "Thermodynamic Assessment of the Bi-Sn-Zn System", Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 31, 2007, pp. 438-448.
9.M. H. Braga, J. Vizdal, A. Kroupa, J. Ferreira, D. Soares, and L.F. Malheiros, "The Experimental Study of the Bi-Sn, Bi-Zn and Bi-Sn-Zn Systems", Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 31, 2007, pp. 468-478.
10.藍功安,『Sn-Zn系無鉛銲錫合金通電熔斷現象之凝固組織變化效應探討及統計分析』,國立成功大學材料科學及工程學系,碩士論文,民國95年,94學年度,92-93頁。
11.J. Jiang, J. E. Lee, K. S. Kim, and K. Suganuma, "Oxidation Behavior of Sn-Zn Solders under High-Temperature and High-Humidity Conditions", Journal of Alloys Compounds, Vol. 462, 2008, pp. 244-251.
12.陳信文,『無鉛銲料簡介』,電子與材料,民國88年,第一期,74-77 頁。
13.M.N. Islam, Y.C. Chan, M.J. Rizvi, and W. Jillek, "Investigations of Interfacial Reactions of Sn-Zn Based and Sn-Ag-Cu Lead-Free Solder Alloys as Replacement for Sn-Pb Solder", Journal of Alloys and Compounds, Vol. 400, 2005, pp. 136-144.
14.藍國峰,『Sn-Zn-xAg無鉛銲錫合金之振動破壞特性研究』,國立成功大學材料科學及工程學系,碩士論文,民國90年,90學年度。
15.游季格,『Sn-9Zn-xCu無鉛銲錫合金通電前後之振動破壞阻抗研究』,國立成功大學材料科學及工程學系,碩士論文,民國94年,93學年度。
16.J. Zhou, Y. Sum, and F. Xue, "Properties of Low Melting Point Sn-Zn-Bi Solders", Journal of Alloys and Compounds, Vol. 397, 2005, pp. 260-264.
17.Y. W. Lee, K. J. Lee, Y. N. Zhou, and J. P. Jung, "Characteristics of Sn8Zn3Bi Solder Joins and Crack Resistance with Various PCB and Lead Coatings", Microelectronics Reliability, Vol. 48, 2007, pp. 631-637.
18.C. F. Yang, F. L. Chen, W. Gierlotka, S. W. Chen, K. C. Hsieh, and L. L. Huang, "Thermodynamic Properties and Phase Equilibria of Sn-Bi-Zn Ternary Alloys", Materials Chemistry and Physics, Vol. 112, 2008, pp. 94-103.
19.P. Sun, C. Andersson, X. Wei, L. Cao, Z. Cheng, and J. Liu, "Low Cycle Fatique Testing and Simulation of Sn-8Zn-3Bi and Sn-37Pb Solder Joints", Soldering & Surface Mount Technology, Vol.17, 2005, pp. 38-45.
20.B. T. Lampe, "Room Temperature Aging Properties of Some Solder Alloys", Welding Journal, Vo. 55, 1976, pp. 330-340.
21.莊強名,『無鉛化共晶銲錫合金之振動破壞特性研究』,國立成功大學材料科學及工程學系,博士論文,民國90 年。
22.ASM handbook, Hugh Baker, ASM International, Metals Park, Ohio, Vol. 3 Alloy Phase Diagrams, 1992.
23.殷翠梅,『Sn-Ag 系無鉛銲錫之振動破壞特性探討』,國立成功大學材料科學及工程學系,碩士論文,民國90年,58-59頁。
24.Y. Miyazawa and T. Ariga, "Influences of Aging Treatment on Microstructure and Hardness of Sn-(Ag, Bi, Zn)Eutectic Solder Alloys", Materials Transactions, Vol. 42, 2001, pp. 776-782.
25.K. Suganuma, T. ShotoKu, Y. Nakamura and K. Niihara, "Wetting and Interface Microstructure Between Sn-Zn Binary Alloys and Cu", Journal of Mateials Research, Vol. 13, 1998, pp. 2859-2865.
26.T. Takemoto, M. Takahashi and A. Matsunawa, "Tensile Deformation Properties and Microstructure of Sn-Zn System Lead-Free Solders", Advances in Electronic Packaging, Vol. 1, 1999, pp. 575-580.
27.陳文照、曾春風與游信和譯,『材料科學與工程導論』,高立圖書公司,民國93年,初版四刷,787-796頁。
28.盧昌甫,『Cu6Sn5金屬間化合物對Sn-xCu共晶無鉛銲錫合金之高溫拉伸變形阻抗效應探討』,國立成功大學材料科學及工程學系,碩士論文,民國95年,50-51頁。