簡易檢索 / 詳目顯示

研究生: 林駿崴
Lin, Chun-Wei
論文名稱: 水溶性微針經皮傳輸美白活性成分應用於改善皮膚色素沉著之研究
Transdermal Delivery of Active Ingredients with Dissolving Microneedles for Skin Depigmentation
指導教授: 陳美瑾
Chen, Mei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 65
中文關鍵詞: 水溶性高分子微針傳明酸維生素C棕櫚酯磷酸三鈉鹽去色素化經皮傳輸
外文關鍵詞: dissolving polymeric microneedle, tranexamic acid, trisodium ascorbyl 6-palmitate 2-phosphate, depigmentation, transdermal delivery
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微針貼片是一種結合針劑注射與傳統經皮貼片優點之無痛式微侵入型醫療裝置,其微米級針狀結構可在不刺激末梢神經的情況下刺穿皮膚角質層,有效地將藥物傳送至皮膚深層。本研究將水溶性生醫高分子聚乙烯醇(polyvinyl alcohol, PVA)與聚乙烯吡咯烷酮(polyvinyl pyrrolidone, PVP)混合,經由兩階段離心灌模製程包覆美白活性成分傳明酸(tranexamic acid, TA)與維生素C棕櫚酯磷酸三鈉鹽(trisodium ascorbyl 6-palmitate 2-phosphate, APPS),開發出一藥物集中於針尖之快溶型高分子美白微針貼片。研究中以等比例混合之PVP/PVA溶液製備出金字塔柱型高分子微針,配合自行研發之微針貼片貼敷器提供穩定的穿刺力道,由體外豬皮與活體天竺鼠穿刺測試證實此微針貼片具有足夠之機械強度可刺穿皮膚達150-200 m,附加之注水功能可幫助微針於穿刺後三分鐘內溶解並釋放藥物,透過多光子共軛焦顯微影像系統證實微針可傳輸藥物至約300 m的深度。此外,由高效液相層析(HPLC)定量結果證實,透過微針總體積與理論包藥量之計算,經兩階段離心灌模製程,可得到與理論值相近(準確度達90%以上)之實際包藥量。由細胞毒性試驗證實,高分子微針與各活性成分在35 g/ml 、70 g/ml與140 g/ml 三種濃度下皆不會對小鼠黑色素瘤細胞(B16-F10)造成強烈毒性。由儲存穩定性分析證實,美白微針貼片存放於40 C下一個月,仍可保持其化學結構穩定性。以棕色天竺鼠為動物模型,經照射UVB誘導天竺鼠皮膚黑色素沉著化,進行美白微針貼片之活體美白效力試驗,由結果推測,徒手按壓穿刺造成穿刺深度不足、穿刺頻率過於密集與天竺鼠過度誘黑(ΔL* ~ 20)三個原因,皆可能造成美白效果不明顯,未來將採用較長之微針結構、降低穿刺頻率與適度誘黑天竺鼠(ΔL* ~ 10)來改善美白效果。

    Microneedle (MN) patches, combining the advantages of hypodermic needles and transdermal patches, have been proposed as a new tool for transdermal drug delivery, because of their efficient delivery and lack of pain. This study reports dissolving microneedles, composed of polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA), for rapid and efficient delivery of depigmentation agents, tranexamic acid (TA) and trisodium ascorbyl 6-palmitate 2-phosphate (APPS). We used a two-step casting process to localize agents in the tip of the needles and reduce drug wastage in the patch. The skin insertion tests showed that the developed microneedles were strong enough to insert into the epidermis layer (~150 m) of porcine cadaver skin and guinea pig skin using a homemade applicator. The designed applicator not only gives a predefined force for insertion, but also provides water to accelerate the microneedle dissolution during insertion. At 3 min post-application, the drug can be completely released from the dissolved microneedles and drug diffusion depth observed in the skin was approximately 300 m. Drug loading assay showed that the amount of drug loading is close to the estimated value obtained from calculation with an accuracy of ~90%. The cell study showed that the agents with the concentration of 35 g/ml, 70 g/ml and 140 g/ml have no cytotoxicity in B16-F10 mouse melanoma cells. Storage stability analysis confirms that the encapsulated agents retain their stability after storage at 40 C for a month. A brownish guinea pig model was used to evaluate the feasibility of using these dissolving microneedles to inhibit UVB-induced skin pigmentation. We found that insertion method, frequency and pigmentation extent may play key roles in the efficacy of skin depigmentation. We will find the optimal regimen to treat hypermelanosis using dissolving microneedles.

    摘要 III Abstract IV 致謝 V 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 皮膚黑化之機制 1 1.2.1 紫外光之介紹 1 1.2.2 皮膚構造 3 1.2.3 黑色素生成機制 4 1.3 美白活性成分之介紹 8 1.3.1 美白活性成分之作用原理 8 1.3.2 傳明酸(tranexamic acid, TA) 9 1.3.3 維生素C棕櫚酯磷酸三鈉鹽(trisodium ascorbyl 6-palmitate 2-phosphate, APPS) 10 1.4 經皮微針貼片 11 1.4.1 微針材料之介紹 11 1.4.2 微針藥物包覆及其應用方式之分類 11 1.4.3 高分子微針貼片 14 1.5 高分子微針材料介紹 16 1.5.1 聚乙烯醇(polyvinyl alcohol, PVA) 16 1.5.2 聚乙烯吡咯烷酮(polyvinyl pyrrolidone, PVP) 16 1.6 研究動機與實驗目的 17 第二章 材料與方法 19 2.1 實驗藥品、耗材 19 2.2 儀器設備 22 2.3 美白微針貼片製備及細胞試驗 24 2.3.1 PVP/PVA微針貼片之製備 24 2.3.2 微針貼片貼敷器(Applicator)之開發 26 2.3.3 體外豬皮穿刺測試 27 2.3.4 天竺鼠活體穿刺測試 28 2.3.5 美白活性成分之包覆與定量 29 2.3.6 高分子微針、活性成分之細胞毒性試驗 31 2.3.7 微針中活性成分之儲存穩定性分析 33 2.4 美白效力試驗 33 2.4.1 誘導天竺鼠皮膚黑色素沉著化 33 2.4.2 美白微針貼片效力試驗 34 第三章 結果與討論 36 3.1 快溶型高分子微針貼片 36 3.1.1 PVP/PVA微針貼片 36 3.1.2 體外豬皮穿刺結果 37 3.1.3 天竺鼠活體穿刺結果 39 3.2 美白微針貼片 41 3.2.1 美白活性成分之包覆與定量結果 41 3.2.2高分子微針、活性成分之細胞毒性試驗: CCK‐8 kit 44 3.2.3 美白微針活性成分儲存穩定性分析結果 46 3.2.4 天竺鼠活體美白效力試驗結果 49 3.2.5 討論 55 第四章 結論 56 參考文獻 58

    [1] Briganti S, Camera E, Picardo M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 2003 Apr;16(2):101-10.
    [2] Ting WW, Vest CD, Sontheimer R. Practical and experimental consideration of sun protection in dermatology. Int J Dermatol. 2003 Jul;42(7):505-13.
    [3] Hwang YJ, Park HJ, Hahn HJ, Kim JY, Ko JH, Lee YW, Choe YB, Ahn KJ. Immediate pigment darkening and persistent pigment darkening as means of measuring the ultraviolet A protection factor in vivo: a comparative study. Br J Dermatol. 2011 Jun;164(6):1356-61.
    [4] van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012 Jul;161(2):645-55.
    [5] Cevc G, Vierl U. Nanotechnology and the transdermal route: A state of the art review and critical appraisal. J Control Release. 2010 Feb;141(3):277-99.
    [6] Kendall M, Rishworth S, Carter F, Mitchell T. Effects of relative humidity and ambient temperature on the ballistic delivery of micro-particles to excised porcine skin. J Invest Dermatol. 2004 Mar;122(3):739-46.
    [7] Shelley WB, Shelley ED, Burmeister V. Melanosome macrocomplex: an ultrastructural component of patterned and nonpatterned seborrheic keratoses. J Am Acad Dermatol. 1987 Jan;16(1 Pt 1):124-8.
    [8] Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004 Oct;84(4):1155-228.
    [9] Tsukamoto K, Palumbo A, D'Ischia M, Hearing VJ, Prota G. 5,6-Dihydroxyindole-2-carboxylic acid is incorporated in mammalian melanin. Biochem J. 1992 Sep;286 ( Pt 2):491-5.
    [10] Odh G, Carstam R, Paulson J, Wittbjer A, Rosengren E, Rorsman H. Neuromelanin of the human substantia nigra: a mixed-type melanin. J Neurochem. 1994 May;62(5):2030-6.
    [11] Rolff M, Schottenheim J, Decker H, Tuczek F. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme. Chem Soc Rev. 2011 Jul;40(7):4077-98.
    [12] Joshi PG, Nair N, Begum G, Joshi NB, Sinkar VP, Vora S. Melanocyte-keratinocyte interaction induces calcium signalling and melanin transfer to keratinocytes. Pigment Cell Res. 2007 Oct;20(5):380-4.
    [13] Hearing VJ Jr, Ekel TM, Montague PM, Nicholson JM. Mammalin tyrosinase. Stoichiometry and measurement of reaction products. Biochim Biophys Acta. 1980 Feb;611(2):251-68.
    [14] Jara JR, Solano F, Garcia-Borron JC, Aroca P, Lozano JA. Regulation of mammalian melanogenesis. II: The role of metal cations. Biochim Biophys Acta. 1990 Sep;1035(3):276-85.
    [15] Duckworth HW, Coleman JE. Physicochemical and kinetic properties of mushroom tyrosinase. J Biol Chem. 1970 Apr;245(7):1613-25.
    [16] Mishima Y, Hatta S, Ohyama Y, Inazu M. Induction of melanogenesis suppression: cellular pharmacology and mode of differential action. Pigment Cell Res. 1988;1(6):367-74.
    [17] Schallreuter KU, Wood JW. A possible mechanism of action for azelaic acid in the human epidermis. Arch Dermatol Res. 1990;282(3):168-71.
    [18] Farris PK. Topical vitamin C: a useful agent for treating photoaging and other dermatologic conditions. Dermatol Surg. 2005 Jul;31(7 Pt 2):814-7.
    [19] Nijor T. Treatment of melasma with tranexamic acid. Clin Res. 1979;13:3129-31.
    [20] Maeda K, Naganuma M. Topical trans-4-aminomethylcyclohexanecarboxylic acid prevents ultraviolet radiation-induced pigmentation. J Photochem Photobiol B. 1998 Dec;47(2-3):136-41.
    [21] Kato E, Tsuzuki T, Miwa N. Pro-vitamin C of the second generation: L-ascorbyl-2-phosphate-6-palmitate trisodium salt. Its dermatological functions and application for cosmetics. Fragr J. 2004;32(2):55-60.
    [22] Davis SP, Martanto W, Allen MG, Prausnitz MR. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans Biomed Eng. 2005 May;52(5):909-15.
    [23] Chen X, Kask AS, Crichton ML, McNeilly C, Yukiko S, Dong L, Marshak JO, Jarrahian C, Fernando GJ, Chen D, Koelle DM, Kendall MA. Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J Control Release. 2010 Dec;148(3):327-33.
    [24] Noh YW, Kim TH, Baek JS, Park HH, Lee SS, Han M, Shin SC, Cho CW. In vitro characterization of the invasiveness of polymer microneedle against skin. Int J Pharm. 2010 Sep;397(1-2):201-5.
    [25] Lee JW, Choi SO, Felner EI, Prausnitz MR. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small. 2011 Feb;7(4):531-9.
    [26] Chabri F, Bouris K, Jones T, Barrow D, Hann A, Allender C, Brain K, Birchall J. Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol. 2004 May;150(5):869-77.
    [27] Qiu Y, Gao Y, Hu K, Li F. Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes. J Control Release. 2008 Jul;129(2):144-50.
    [28] Donnelly RF, Morrow DI, McCarron PA, Woolfson AD, Morrissey A, Juzenas P, Juzeniene A, Iani V, McCarthy HO, Moan J. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: potential for enhanced topical photodynamic therapy. J Control Release. 2008 Aug;129(3):154-62.
    [29] Kalluri H, Kolli CS, Banga AK. Characterization of microchannels created by metal microneedles: formation and closure. AAPS J. 2011 Sep;13(3):473-81.
    [30] Verbaan FJ, Bal SM, van den Berg DJ, Dijksman JA, van Hecke M, Verpoorten H, van den Berg A, Luttge R, Bouwstra JA. Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. J Control Release. 2008 May;128(1):80-8.
    [31] Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005 May;104(1):51-66.
    [32] Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008 May;29(13):2113-24.
    [33] Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater. 2008 Mar;20(5):933-938.
    [34] Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res. 2006 May;23(5):1008-19.
    [35] Sullivan SP, Koutsonanos DG, Del Pilar Martin M, Lee JW, Zarnitsyn V, Choi SO, Murthy N, Compans RW, Skountzou I, Prausnitz MR. Dissolving polymer microneedle patches for influenza vaccination. Nat Med. 2010 Aug;16(8):915-20.
    [36] Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release. 2011 Feb;149(3):242-9.
    [37] Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004 Mar;56(5):581-7.
    [38] Martanto W, Moore JS, Kashlan O, Kamath R, Wang PM, O'Neal JM, Prausnitz MR. Microinfusion using hollow microneedles. Pharm Res. 2006 Jan;23(1):104-13.
    [39] Saurer EM, Flessner RM, Sullivan SP, Prausnitz MR, Lynn DM. Layer-by-Layer Assembly of DNA- and Protein-Containing Films on Microneedles for Drug Delivery to the Skin. Biomacromolecules. 2010 Oct.
    [40] Kim M, Jung B, Park JH. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials. 2012 Jan;33(2):668-78.
    [41] Wu F, Yang S, Yuan W, Jin T. Challenges and strategies in developing microneedle patches for transdermal delivery of protein and peptide therapeutics. Curr Pharm Biotechnol. 2012 Jun;13(7):1292-8.
    [42] Tsioris K, Raja WK, Pritchard EM, Panilaitis B, Kaplan DL, Omenetto FG. Fabrication of Silk Microneedles for Controlled-Release Drug Delivery. Adv Funct Mater. 2012;22:330-5.
    [43] Lee K, Jung H. Drawing lithography for microneedles: a review of fundamentals and biomedical applications. Biomaterials. 2012 Oct;33(30):7309-26.
    [44] Rodwell DE, Kelly CM, DeMerlis CC, Schoneker DR, Borzelleca JF. Effects of polyvinyl alcohol administered in the diet to rats on fertility, early embryonic development, growth and development. Food Chem Toxicol. 2003 May;41(5):729-37.
    [45] DeMerlis CC, Schoneker DR. Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol. 2003 Mar;41(3):319-26.
    [46] Kobayashi M, Toguchida J, Oka M. Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials. 2003 Feb;24(4):639-47.
    [47] D'Souza AJ, Schowen RL, Topp EM. Polyvinylpyrrolidone-drug conjugate: synthesis and release mechanism. J Control Release. 2004 Jan;94(1):91-100.
    [48] Zerrouk N, Mennini N, Maestrelli F, Chemtob C, Mura P. Comparison of the effect of chitosan and polyvinylpyrrolidone on dissolution properties and analgesic effect of naproxen. Eur J Pharm Biopharm. 2004 Jan;57(1):93-9.
    [49] Fitzpatrick S, McCabe JF, Petts CR, Booth SW. Effect of moisture on polyvinylpyrrolidone in accelerated stability testing. Int J Pharm. 2002 Oct;246(1-2):143-51.
    [50] Blecher L, Burnette LW. Parenteral uses of polyvinylpyrrolidone. Bull Parenter Drug Assoc. 1969 May-Jun;23(3):124-31.
    [51] Tan YT, Peh KK, Al-Hanba O. Investigation of interpolymer complexation between Carbopol and various grades of polyvinylpyrrolidone and effects on adhesion strength and swelling properties. J Pharm Pharm Sci. 2001 Jan-Apr;4(1):7-14.
    [52] Rogero SO, Malmonge SM, Lugão AB, Ikeda TI, Miyamaru L, Cruz AS. Biocompatibility study of polymeric biomaterials. Artif Organs. 2003 May;27(5):424-7.
    [53] Chi CC, Wang SH, Kuo TT. Localized cutaneous polyvinylpyrrolidone storage disease mimicking cheilitis granulomatosa. J Cutan Pathol. 2006 Jun;33(6):454-7.
    [54] Bilodeau ML, Greulich JD, Hullinger RL, Bertolotto C, Ballotti R, Andrisani OM. BMP-2 stimulates tyrosinase gene expression and melanogenesis in differentiated melanocytes. Pigment Cell Res. 2001 Oct;14(5):328-36.
    [55] Yokozawa T, Kim YJ. Piceatannol inhibits melanogenesis by its antioxidative actions. Biol Pharm Bull. 2007 Nov;30(11):2007-11.
    [56] Sato K, Takahashi H, Iraha R, Toriyama M. Down-regulation of tyrosinase expression by acetylsalicylic acid in murine B16 melanoma. Biol Pharm Bull. 2008 Jan;31(1):33-7.
    [57] Lee K, Lee CY, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials. 2011 Apr;32(11):3134-40.
    [58] Saral Y, Uyar B, Ayar A, Naziroglu M. Protective effects of topical alpha-tocopherol acetate on UVB irradiation in guinea pigs: importance of free radicals. Physiol Res. 2002;51(3):285-90.
    [59] Tobiishi M, Haratake A, Kaminaga H, Nakahara M, Komiya A, Koishikawa H, Uchiwa H, Kawa Y, Mizoguchi M. Changes in responses of UVB irradiated skin of brownish guinea pigs with aging. Pigment Cell Res. 2005 Aug;18(4):278-84.
    [60] Park KT, Kim JK, Hwang D, Yoo Y, Lim YH. Inhibitory effect of mulberroside A and its derivatives on melanogenesis induced by ultraviolet B irradiation. Food Chem Toxicol. 2011 Dec;49(12):3038-45.
    [61] Imokawa G, Kawai M, Mishima Y, Motegi I. Differential analysis of experimental hypermelanosis induced by UVB, PUVA, and allergic contact dermatitis using a brownish guinea pig model. Arch Dermatol Res. 1986;278(5):352-62.

    無法下載圖示 校內:2018-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE