簡易檢索 / 詳目顯示

研究生: 蘇水龍
Su, Shui-Lung
論文名稱: 覆晶封裝錫球尺寸與變形之研究
Study the effect of the bump size on its deformation during Flip Chip Packaging.
指導教授: 楊文彬
Young, Wen-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 覆晶封裝錫球尺寸
外文關鍵詞: Flip Chip Package, bump size
相關次數: 點閱:181下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 覆晶封裝現今為封裝技術業界相當關注的封裝技術,高接腳數與細間距為其特點。覆晶封裝在晶片與基板接合時,需於高溫下加壓,因而使錫球變形並黏於基板上。在利用理論分析封裝製程時,需要各個元件的材料參數,其中用於當作接點的合金錫球變形行為,屬於塑性變形行為,在取得其應力應變關係,須利用實驗搭配模擬分析。本論文探討合金錫球尺寸對其材料參數的關係,在取得合金錫球之應力應變關係時,必須先以實驗量測合金錫球的受力與變形關係,再利用試誤法搭配有限元素分析,吻合實驗量測值取得合金錫球之塑性變形參數,並探討合金錫球之溫度和尺寸與塑性變形參數之關係。最後利用有限元素模擬分析各尺寸合金錫球,在不同溫度下的應力分佈,觀察應力在Y方向的分量,並探討合金錫球的尺寸和溫度與Y方向之應力分量的趨勢。

    Flip Chip Package, which have high pin density and fine pitch, is one of the most important technologies into the integrated circuit packaging industry. It is also used in liquid crystal displays which is called chip on glass packaging processes. To simulate the packaging process, the material properties of all components are required. The bump will have large plastic deformation during the packaging. This study employed a home-made machine to measure the relationship between the compression force and bump deformation. The results were used to match the simulated data by a CAE software. From matching the experimental and simulated data, the material constants for the plastic flow of the solder bumps was determined. This study discussed the effect of the bump size on the deformation of the solder bump. After obtaining material constants of the bumps, simulations by CAE software could provide the stress distribution around the bump. It also predicted the Y-component of stress for different bump sizes and the packaging temperatures.

    中文摘要 i ABSTRACT ii 誌謝 iii 表目錄 vii 圖目錄 viii 第一章 緒論 1 1-1前言 1 1-2 液晶顯示器之封裝製程 2 1-3 文獻回顧 5 1-4 研究目的與動機 6 第二章 理論原理與模擬介紹 8 2-1 理論原理[12] 8 2-1-1 塑性理論 8 2-1-2 塑性增量 11 2-1-3 多線性等向強化 13 2-1-4 合金錫球之塑性變形參數 14 2-2 ANSYS模擬 15 2-2-1 ANSYS分析流程 16 2-2-2 模型建立 17 2-2-3 網格化 24 2-2-4 設定邊界條件與定義負載 25 第三章 實驗設備與製程規畫 28 3-1 錫球製作 28 3-2 壓力負載量測平台 31 3-3實驗流程 39 第四章 結果與討論 41 4-1 實驗結果 41 4-2 實驗平均值與ANSYS模擬值之吻合 52 4-3 各尺寸合金錫球在不同溫度之Y方向應力分量 59 第五章 結論 70 參考文獻 72 附錄 合金錫球熱壓過程之APDL碼 74

    [1] http://ieknet.iek.org.tw/.
    [2] M. P. Tian, Panel designs and module assembly of TFT LCDs Wu-Nan books. Taipei, 2008.
    [3] L. K. Teh, E. Anto, C. C. Wong, S. G. Mhaisalkar, E. H. Wong, P. S. Teo, et al., "Development and reliability of non-conductive adhesive flip-chip packages," Thin Solid Films, pp. 462-463:446-453, 2004.
    [4] J. C. Hwang, "Advanced low-cost bare-die packaging technology for liquid-crystal displays," IEEE Trans Compon Packag Manuf Technol A, vol. 18, pp. 458-461, 1995.
    [5] K. Hatada, H. Fujimoto, T. Kawakita, and T. Ochi, "A new LSI bonding technology: micro bump bonding assembly technology," In: Electronic Manufacturing Technology Symposium, pp. 23-27, 1998.
    [6] S. M. Chang, J. H. Jou, A. Hsieh, T. H. Chen, J. N. Jao, and H. S. Wu, "Internal stress and connection resistance correlation study of microbump bonding," IEEE Trans Compon Packag Technol, vol. 24, pp. 493-499, 2001.
    [7] H. C. Cheng, C. L. Ho, K. N. Chiang, and S. M. Chang, "Process-dependent contact characteristics of NCA assemblies," IEEE Trans Compon Packag Technol, vol. 27, pp. 398-410, 2004.
    [8] S. Y. Kim, T. S. Oh, W. J. Lee, and Y. H. Kim, "Low temperature and ultra fine pitch joints using non-conductive adhesive for flip chip Technology," In: Electronic Packaging Technology, pp. 1-4, 2006.
    [9] B. G. Kim, S. M. Lee, and Y. H. Kim, "The Reliability of 30 mm pitch COG joints fabricated using Sn/Cu bumps and non-conductive adhesive," In: Electronic Materials and Packaging, pp. 1-3, 2007.
    [10] B. G. Kim, S. M. Lee, Y. S. Jo, S. C. Kim, K. M. Harr, and Y. H. Kim, "Highly reliable, fine pitch chip on glass (COG) joints fabricated using Sn/Cu bumps and non-conductive adhesives," Microelectronics Reliability, 2011.
    [11] M. Y. Chen, C. C. An, S. M. Chang, K. S. Kao, J. Tsang, S. S. Yang, et al., "Theoretical Stress Calculation and Experimental Results of "NCF-type Compliant-Bumped COG"," In: Electronics Packaging Technology Conference, pp. 71-74, 2007.
    [12] "4.2 Rate-Indepenadent Plasticity," 12.1 ed: ANSYS, 2009.
    [13] W. Ramberg and W. R. Osgood, "Description of stress-strain curves by three parameters," Tech Note 902, NASA, 1943.
    [14] F. Zhu, H. Zhang, R. Guan, and S. Liu, "The effect of temperature and strain rate on the tensile properties of a Sn99.3Cu0.7(Ni) lead-free solder alloy," Microelectronic Engineering, vol. 84, pp. 144-150, 2007.
    [15] 陳精一, ANSYS電腦輔助工程實務分析: 全華圖書股份有限公司, 2000.
    [16] "PLANE183 Input Summary," 12.1 ed: ANSYS, 2009.
    [17] "TARGE169 Input Summary," 12.1 ed: ANSYS, 2009.
    [18] "CONTA172 Input Summary," 12.1 ed: ANSYS, 2009.
    [19] W. J. Plumbridge, "Solders in electronics," J Mater Sci, vol. 31, pp. 2501-2514
    1996.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE