| 研究生: |
謝峰銘 Hsieh, Feng-Ming |
|---|---|
| 論文名稱: |
包埋惡臭假單胞菌於幾丁聚醣顆粒對酚降解之研究 Entrapment of Pseudomonas putida in chitosan beads for phenol degradation |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 幾丁聚醣 、填充床 、惡臭假單胞菌 、有效擴散係數 、酚的生物降解 、包埋固定化 |
| 外文關鍵詞: | phenol biodegradation, effective diffusion coefficient, entrapment, packed-bed column, chitosan, Pseudomonas putida |
| 相關次數: | 點閱:108 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,利用幾丁聚醣(chitosan)與三聚磷酸鈉(sodium tripolyphosphate)所形成的膠體顆粒包埋具有降解酚能力的惡臭假單胞菌(Pseudomonas putida CCRC14349),探討包埋菌體顆粒的特性及降解酚的效能。經過最佳處理程序所製備的包埋菌體之顆粒,以批次震盪培養的方式與懸浮菌體比較降解酚的效能,結果顯示包埋菌體具有多項優勢,包括酚降解過程中保持溶液澄清、提升環境負荷的忍受度(如高pH值、低離子強度或高濃度酚的環境)以及長期的重複使用性等。而顆粒經過酚馴養後,表現出耐酸性及高離子強度的穩定結構,並藉由酚在顆粒中有效擴散係數的計算可說明,隨著重複進行酚降解馴養後,支配酚降解速率的要素將由擴散限制轉趨於反應限制。對於連續式酚降解測試,將顆粒填充於管柱中運作,利用加入過氧化氫可有效的提供菌體代謝酚所需的溶氧,並隨著停留時間的增加,酚的去除可接近於完全。
This study was aimed to investigate the efficiency of phenol degradation by Pseudomonas putida CCRC14349 that was entrapped within the gel beads prepared by chitosan crosslinked with sodium tripolyphosphate. In addition, various characteristics of these beads were evaluated as well. The efficiency of phenol degradation for the entrapped cells was optimized by changing various processing parameters, such as the amount of cells used, beads washing medium as well as acclimatization strategy. Based on the batch phenol degradation results, these entrapped cells were found to be superior to the free cells in terms of keeping the solution clear, improving the toleration to the environmental loadings (e.g., high pH, low ionic strength, high phenol concentration), and repeating usage for an extended period. After phenol acclimatization, the structure of cell-entrapped beads showed to be stable under acidic and high ionic strength conditions. Diffusion coefficient calculation has indicated that phenol degradation by the entrapped cells varied from the intraparticle diffusion control to reaction control as the beads were used repeatedly. With the increase of hydraulic retention time and the addition of hydrogen peroxide to increase the dissolved oxygen level for cell metabolism, phenol in the influent was almost completely degraded in the packed-column test.
1. Zmriye Aksu, Gltac Blbl, “Determination of the effective diffusion coefficient of phenol in Ca-alginate-immobilized P. putida beads”, Enzyme and Micorbial Technology, 25, 344-348, 1999.
2. Alper Nuhoglu, Beste Yalcin, “Modelling of phenol removal in a batch reactor”, Process Biochemistry, 40, 1233-1239, 2005.
3. Monica A. Barron, Lynne Haber, Andrew Maier, Jay Zhao, Michael Dourson, “Phenol”, Toxicological Review, U.S. Environmental Protection Agency, 2000.
4. AM Hannaford, C Kuek, “Aerobic batch degradation of phenol using immobilized Pseudomonas putida”, Journal of Industrial Microbiology & Biotechnology, 22, 121-126, 1999.
5. 阮國棟,「廢水中各種酚類去除之理論與實務」,工業污染防治,第3卷,第3期,88-103頁,1984。
6. Gali S. Veeresh, Pradeep Kumar, Indu Mehrotra, “Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review”, Water Research, 39, 154-170, 2005.
7. Arzu Y. Dursun, Ozlem Tepe, “Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha”, Journal of Hazardous Materials, 126, 105-111, 2005.
8. K. Bandhyopadhyay, D. Das, P. Bhattacharyya, B.R. Maiti, “Reaction engineering studies on biodegradation of phenol by Pseudomonas putida MTCC 1194 immobilized on calcium alginate”, Biochemical Engineering Journal, 8, 179-186, 2001.
9. Moustafa El-Sayed Abd El-Hameid Shalaby, “Biological degradation of substrate mixtures composed of phenol, benzoate and acetate by Burkholderia cepacia G4” Ph.D. der Technischen Universitt Carolo-Wilhelmina, 2003.
10. 鄭幸雄,「好養性接觸氧化法處理酚醛樹脂廢水」,第十六屆廢水處理技術研討會論文集,133-142頁,1991。
11. Patricia H. Clarke, L. Nicholas Ornston, “Metabolic pathways and regulation: I”, In Genetics and Biochemistry of Pseudomonas, edited by P. H. Clarke and M. H. Richmond, John Wiley & Sons publication, Great Britain, 191-261, 1975.
12. Ren Der Yang, Arthur E. Humphery, “Dynamic and steady studies of phenol biodegradation in pure and mixed cultures”, Biotechnology and Bioengineering, 17, 1211-1235, 1975.
13. Karola Schhle, Georg Fuchs, “Phenylphosphate carboxylase: a new C-C lyase involved in anaerobic phenol metabolism in thauera aromatica ”, Journal of Bacteriology, 186, 4556-4567, 2004.
14. Kenneth N. Timmis, “Pseudomonas putida: a cosmopolitan opportunist par excellence”, Environmental Microbiology, 4, 779-781, 2002.
15. Winfried Hartmeier, “Immobilized biocatalysts: an introduction”, Springer-Verlag publication, New York, 1988.
16. 吳美惠,張芳賓,朱昱學,「固定化微生物廢水處理技術評估」,工業污染防治,第59期,81-110頁,1996。
17. Gordon F. Bickerstaff, “Immobilization of enzymes and cells”, Humana publication, New Jersey, 1997.
18. Ichiro Chibata, Lemuel B. Wingaed, “Immobilized microbial cells”, In Applied Biochemistry and Bioengineering, edited by Lemuel B. Wingaed, Jr., Ephraim Katchalski-Katzir and Leon Goldstein, Academic Press, New York, 190-245, 1983.
19. 陳國誠,吳建一,「微生物固定化技術在廢水處理的應用」,工業污染防治,第68期,1-23頁,1998。
20. 江晃榮,「生物技術與污染防治(一)固定化微生物在廢水處理上之應用」,工業污染防治,第35期,59-68頁,1990。
21. Wang Jianlong, Han Liping, Shi Hanchang, Qian Yi, “Biodegradation of quinoline by gel immobilized Burkholderia sp.”, Chemosphere, 44, 1041-1046, 2001.
22. 蔣挺大,「甲殼素 」,中國環境科學出版社,北京,1996。
23. Barbara Krajewska, “Application of chitin- and chitosan-based materials for enzyme immobilizations: a review”, Enzyme and Microbial Technology, 35, 126-139, 2004.
24. M.N.V. Ravi Kumar, R.A.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A. J. Domb, “Chitosan chemistry and pharmaceutical perspectives”, Chemical Reviews, 104, 6017-6048, 2004.
25. 蘇遠志,「幾丁質與幾丁聚醣之機能及其有效利用」,幾丁質幾丁聚醣研討會論文專輯,2001。
26. J.A. Ko, H.J. Park, S.J. Hwang, J.B. Park, J.S. Lee, “Preparation and characterization of chitosan microparticles intended for controlled drug delivery”, International Journal of Pharmaceutics, 249, 165-174, 2002.
27. X.Z. Shu, K.J. Zhu, “A novel approach to prepare tripolyphosphate: chitosan complex beads for controlled release drug delivery”, International Journal of Pharmaceutics, 201, 51-58, 2000.
28. X.Z. Shu, K.J. Zhu, “Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure”, International Journal of Pharmaceutics, 233, 217-225, 2002.
29. Fwu-Long Mi, Shin-Shing Shyu, Chih-Yang Kuan, Sung-Ta Lee, Kai-Tai Lu, Shiang-Fang Jang, “Chitosan–polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. I. effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of polymer”, Journal of Applied Polymer Science, 74, 1868-1879, 1999.
30. Fwu-Long Mi, Shin-Shing Shyu, Tsung-Bi Wong, Shiang-Fang Jang, Sung-Tao Lee, Kai-Tai Lu, “Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II. effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent”, Journal of Applied Polymer Science, 74, 1093-1107, 1999.
31. 糜福龍,「幾丁聚醣應用於藥物集疫苗傳輸系統之設計及研究」,國立中央大學化學工程研究所博士論文,1997。
32. Wang J, Qian Y, “Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenan-chitosan gels”, Chemosphere, 38, 3109-3177, 1999.
33. Lucila Ensuncho, Manuel Alvarez-Cuenca, Raymond L. Legge, “Removal of aqueous phenol using immobilized enzymes in a bench scale and pilot scale three-phase fluidized bed reactor”, Bioprocess and Biosystems Engineering, 27, 185-191, 2005.
34. Valentino M. Kaya, Gaston Picard, “Stability of chitosan gel as entrapment matrix of viable Scenedesmus bicellularis cells immobilized on screens for tertiary treatment of wastewater”, Bioresource Technology, 56, 147-155, 1996.
35. Fwu-Long Mi, Shin-Shing Shyu, Sung-Tao LEE, Tsung-Bi Wong, “Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method”, Journal of Polymer Science: Part B: Polymer Physics, 37, 1551-1564, 1999.
36. Cordon A. Hill, Campbell W. Robinson, “Substrate inhibition kinetics: phenol degradation by Pseudomonas putida”, Biotechnology and Bioengineering, 17, 1599-1615, 1975.
37. 郭家倫,「纖維床生物反應器祛除甲苯與三氯乙烯之研究」,國立中央大學環境工程研究所博士論文,2002。
38. A.D. Eaton, L.S. Clesceri, A.E. Greenburg, “5530D Direct Photometric Methods”, In Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association and Water Environment Federation, Washington, D.C., 5-33, 1992.
39. E.J. Emerson, “The condensation of aminoantipyrine.Ⅱ. A new Color test for phenolic compounds”, Journal of Organic Chemistry, 8, 417-420, 1943.
40. Hong Kyoon No, Na Young Park, Shin Ho Lee, Samuel P. Meyers, “Antibacterial activity of chitosans and chitosan oligomers with different molecular weights”, International Journal of Food Microbiology, 74, 65-72, 2002.
41. Guo-Jane Tsai, Wen-Huey Su, Hsing-Chen Chen, Chorng-Laing Pan, “Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation”, Fisheries Science, 68, 170-177, 2002.
42. N.V. Narendramath, K.C. Thomas, W.M. Lngledew, “Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium”, Journal of Industrial Microbiology and Biotechnology, 26, 171-177, 2001.
43. Silvia A. Nakai, Karl J. Siebert, “Organic acid inhibition models for Listeria innocua, Listeria ivanovii, Pseudomonas aeruginosa and Oenococcus oeni”, Food Microbiology, 21, 67-72, 2004.
44. Tsuey-Ping Chung, Hsiu-Ya Tseng, Ruey-Shin Juang, “Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems”, Process Biochemistry, 38, 1497-1507, 2003.
45. I. Banerjee, Jayant M. Modak, K. Bandopadhyay, D. Das, B.R. Maiti, “Mathematical model for evaluation of mass transfer limitations in phenol biodegradation by immobilized Pseudomonas putida”, Journal of Biotechnology, 87, 211-223, 2001.
46. Xiaoqiang Jia, Jianping Wen, Yan Jiang, Jing Bai, Xianrui Cheng, “Modeling for batch phenol biodegradation with immobilized Alcaligenes faecalis”, American Institute of Chemical Engineers Journal, 52, 1294-1303, 2002.
47. Kuo-Cheng Chen, Yun-Huin Lin, Wen-Hsiang Chen, Yi-Chun Liu, “Degradation of phenol by PAA-immobilized Candida tropicalis”, Enzyme and Microbial Technology, 31, 490-497, 2002.
48. Goran Molin, Inge Nilsson, “Degradation of phenol by Pseudomonas putida ATCC 11172 in continuous culture at different ratios of biofilm surface to culture volume”, Applied and Enviromental Microbiology, 50, 946-950, 1985.
49. D. Leonard, C. Ben Youssef, C. Destruhaut, N.D. Lindley, I. Queinnec, “Phenol degradation by Ralstonia eutropha: colorimetric determination of 2-hydroxymuconate semialdehyde accumulation to control feed strategy in fed-batch fermentations”, Biotechnology and Bioengineering, 65, 407-415, 1999.
50. Angela Mordocco, Clem Kuek, Roger Jenkins, “Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida”, Enzyme and Microbial Technology, 25, 530-536, 1999.
51. S. Manohar, T.B. Karegoudar, “Degradation of naphthalene by cells of Pseudomonas sp. strain NGK 1 immobilized in alginate, agar and polyacrylamide”, Applied Microbiology and Biotechnology, 49, 785-792, 1998.
52. Arzu Y. Dursun, Zmriye Aksu, “Effect of internal diffusivity of ferrous(II) cyanide complex ions in Ca-alginate immobilized Pseudomonas fluorescens gel beads on the biodegradation rate”, Process Biochemistry, 37, 747-752, 2002.
53. U. Sharanagouda, T.B. Karegoudar, “Degradation of 2-methylnaphthalene by free and immobilized cells of Pseudomonas sp. strain NGK1”, World Journal of Microbiology and Biotechnology, 18, 225-230, 2002.
54. K. Bandhyopadhyay, D. Das, B.R. Maiti, “Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation”, Applied Microbiology and Biotechnology, 51, 891-895, 1999.
55. Perry L. McCarty, Mark N. Goltz, Gary D. Hopkins, Mark E. Dolan, Jason P. Allan, Brett T. Kawakami, T.J. Carrothers, “Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection”, Enviromental Science and Technology, 32, 88-100, 1998.
56. E. Erhan, E. Yer, G. Akay, B. Keskinler, D. Keskinler, “Phenol degradation in a fixed-bed bioreactor using micro-cellular polymer-immobilized Pseudomonas syringae”, Journal of Chemical Technology and Biotechnology, 79, 195-206, 2004.