簡易檢索 / 詳目顯示

研究生: 黃婕瑜
Huang, Chieh-Yu
論文名稱: 非線性靜力側推分析與非線性增量動力分析之轉換關係研究-以L型中高樓扭轉不規則建築結構為例
Correlation between Nonlinear SPO2IDA-The Case of L-Shape Middle to High-Rise RC Building with Torsional Irregularity
指導教授: 劉光晏
Liu, Kuang-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 299
中文關鍵詞: 中高樓不規則建築物非線性靜力側推分析增量動力分析SPO2IDA
外文關鍵詞: Irregular buildings in high-rise buildings, Static Pushover Analysis, Incremental Dynamic Analysis, SPO2IDA
相關次數: 點閱:167下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 都會區由於地狹人稠,故建築物多屬於中高樓結構,於2016年美濃地震及2018年花蓮地震中,有若干中高樓建築物因老舊、設計施工不良,或結構系統為不規則配置等因素而倒塌,導致死傷慘重。根據臺灣建築物耐震設計規範,對於較高樓層或平立面不規則之建築物需以非線性動力分析進行耐震詳細評估,然而執行非線性動力分析所耗時間較長,所需人力成本亦較高,因此本研究將針對L型中高樓扭轉不規則建築結構,透過執行非線性靜力側推分析與增量動力分析探討其耐震能力,並發展兩者間之轉換關係。
    首先利用非線性靜力側推分析法評估L型不同跨徑比建築物間之耐震能力,並比較設置ETABS軟體內建ASCE 41-13塑鉸及國家地震中心與中興社合作開發之TEASPA V4.0塑鉸之分析結果。接著利用前人建立之中高樓結構機率式倒塌評估流程,評估L型不同跨徑比建築物間之耐震能力,分析方式採用增量動力分析,並比較設置ETABS軟體內建ASCE 41-13塑鉸及國家地震中心開發之TEASDA塑鉸之分析結果。再比較L型不規則建築物使用非線性靜力側推分析與增量動力分析之耐震評估結果,並將其結果應用於前人建立之SPO2IDA Excel工作簿及SPO2FRAG程式。
    比較結果顯示L型中高樓扭轉不規則建築物使用現有的轉換方法皆無法正確利用側推曲線模擬出增量動力分析曲線,因此本文選用SPO2IDA Excel工作簿改良其轉換關係,亦針對不同塑鉸提出不同修正方式及公式。研究結果顯示,L型中高樓扭轉不規則建築物使用改良後之SPO2IDA Excel工作簿,可使轉換結果更加貼近實際動力分析結果。

    According to the Seismic Design Code for Building in Taiwan, buildings with higher floors or vertical irregularities or plan irregularities need to be evaluated for seismic performance by nonlinear dynamic analysis. However, it takes a long time to perform nonlinear dynamic analysis and higher labor costs. Therefore, this study investigates the seismic performance of L-shaped middle to high-rise building. Evaluate its seismic performance by performing the Static Pushover (SPO) analysis and Incremental Dynamic analysis (IDA), and provide the correlation between SPO2IDA.
    First, use pushover analysis to evaluate the seismic performance of the L-shaped buildings with different span ratios, and compare the results of the ASCE 41-13 defult plastic hinges and the TEASPA V4.0 plastic hinges developed by the National Center for Research on Earthquake Engineering (NCREE) and Sinotech Engineering Consultants Incorporation (SEC). Then use probabilistic assessment presented by previous researchers to discuss the seismic performance of L-shaped buildings with different span ratios. And compare the results of the ASCE 41-13 defult plastic hinges and the TEASDA plastic hinges developed by the NCREE. Then apply the results of using the pushover analysis to the SPO2IDA Excel workbook and SPO2FRAG program presented by previous researchers.
    The comparing results show that the existing conversion methods for L-shaped middle to-high-rise buildings cannot correctly use the SPO curves to simulate the IDA curves. Therefore, this study chooses the SPO2IDA Excel workbook to improve its conversion relationship, and also proposes different correction methods and formulas for different plastic hinges. The research results show that using the improved SPO2IDA Excel workbook for L-shaped middle to-high-rise buildings can make the conversion results closer to the actual IDA curves.

    摘要 I 誌謝 V 目錄 VI 表目錄 XI 圖目錄 XVII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與研究目的 1 1.3 研究內容 2 第二章 文獻回顧 4 2.1 地震災害之歷史回顧 4 2.1.1 1999年集集地震 4 2.1.2 2016年美濃地震 5 2.1.3 2018年花蓮地震 5 2.2 中高樓結構地震損壞模式探討 6 2.2.1 結構非韌性配筋 6 2.2.2 軟弱底層 6 2.2.3 扭轉效應 7 2.3 非線性靜力分析 8 2.3.1 建立耐震性能曲線 9 2.3.2 等能量原則雙線性化 12 2.4 非線性動力分析 13 2.4.1 建築物耐震設計規範相關規定 13 2.4.2 中高樓結構機率式倒塌評估法 14 2.4.2.1 機率式倒塌風險評估流程 14 2.4.2.2 結構性能等級 15 2.4.2.3 地震歷時挑選與縮放 17 2.4.2.4 建立易損性曲線 19 2.4.2.5 倒塌容量性能指標 21 2.5 有關非線性靜力側推分析與非線性增量動力分析之轉換關係文獻回顧 22 2.5.1 SPO2IDA 22 2.5.1.1 SPO2IDA理論背景 22 2.5.1.2 SPO2IDA操作步驟 25 2.5.2 SPO2FRAG 28 2.6 分析套裝軟體簡介 29 2.6.1 ETABS 30 2.6.2 TEASPA 30 2.6.3 TEASDA 31 第三章 非線性側推分析 55 3.1 建築物基本資訊 55 3.2 分析模型建立 55 3.2.1 模型組別 56 3.2.2 結構構件資訊 56 3.2.3 ASCE 41-13塑鉸設定模型 58 3.2.4 TEASPA塑鉸設定模型 59 3.3 意外扭矩放大係數 61 3.4 側向力豎向分配型式 63 3.5 塑鉸驗證 64 3.5.1 ASCE 41-13塑鉸驗證 64 3.5.2 TEASPA塑鉸驗證 67 3.5.2.1 比較手算塑鉸參數與TEASPS程式塑鉸參數 69 3.5.2.2 比較混凝土彈性模數差異對塑鉸參數之影響 72 3.5.3 ASCE 41-13塑鉸及TEASPA塑鉸之比較 74 3.6 性能目標標準 75 3.7 側推分析結果 75 3.7.1 側推分析結果比較 76 3.7.2 設定ASCE塑鉸模型之側推分析結果 77 3.7.2.1 TypeA-ASCE模型側推分析結果 77 3.7.2.2 TypeB-ASCE模型側推分析結果 77 3.7.2.3 TypeC-ASCE模型側推分析結果 78 3.7.3 設定TEASPA塑鉸模型之側推分析結果 78 3.7.3.1 TypeA-TEASPA模型側推分析結果 78 3.7.3.2 TypeB-TEASPA模型側推分析結果 79 3.7.3.3 TypeC-TEASPA模型側推分析結果 79 3.7.4 TypeA、TypeB與TypeC模型之比較 80 第四章 非線性增量動力分析 141 4.1 分析模型建立 141 4.1.1 模型組別 141 4.1.2 ASCE 41-13塑鉸設定模型 142 4.1.3 TEASDA塑鉸設定模型 143 4.2 塑鉸驗證 144 4.2.1 ASCE 41-13塑鉸驗證 145 4.2.2 TEASDA塑鉸驗證 149 4.2.3 ASCE 41-13塑鉸及TEASPA塑鉸之比較 153 4.3 地震歷時之選取 154 4.3.1 目標反應譜 154 4.3.2 地震歷時挑選與縮放 155 4.4 倒塌破壞準則 155 4.5 倒塌容量性能指標 156 4.6 增量動力分析結果 157 4.6.1 設定ASCE塑鉸模型之增量動力分析結果 157 4.6.1.1 TypeA-ASCE增量動力分析結果 157 4.6.1.2 TypeB-ASCE增量動力分析結果 158 4.6.1.3 TypeC-ASCE增量動力分析結果 159 4.6.2 設定TEASDA塑鉸模型之增量動力分析結果 159 4.6.2.1 TypeA-TEASDA增量動力分析結果 159 4.6.2.2 TypeB-TEASDA增量動力分析結果 160 4.6.2.3 TypeC-TEASDA增量動力分析結果 161 4.6.3 TypeA、TypeB與TypeC模型之比較 161 第五章 側推分析與增量動力分析之轉換關係 212 5.1 側推分析與增量動力分析結果比較 212 5.1.1 比較結構消能差異 212 5.1.2 比較側推分析與以結構主要週期反應譜正規化之動力分析結果 213 5.1.3 比較側推分析與增量動力分析之耐震評估結果 214 5.2 應用SPO2IDA工作簿之分析結果 215 5.3 應用SPO2FRAG程式之分析結果 216 5.4 比較應用SPO2IDA工作簿及SPO2FRAG程式之分析結果 216 5.5 改良SPO2IDA工作簿應用於L型中高樓扭轉不規則建築物 217 5.5.1 調整步驟 217 5.5.2 擬合結果 221 5.5.3 擬合結果之倒塌容量性能指標 222 第六章 結論與建議 254 6.1 結論 254 6.2 建議 256 參考文獻 258 附錄A 意外扭距放大係數-線彈性段 262 附錄B 意外扭距放大係數-非線性段 274 附錄C 證明方法二可簡化成方法四 298

    [1] Applied Technology Council (ATC), Seismic Evaluation and Retrofit of Concrete Buildings, Report No.ATC-40, California, USA, 1996.
    [2] Anil.K.Chopra, “Dynamics of structures, Theory and Applications to Earthquake Engineering, Third edition”, Pearson Prentice Hall, Inc. U.S.A.,2007.
    [3] ASCE 41-06, Seismic rehabilitation of existing building, American Society of Civil Engineers, ASCE, 2007.
    [4] ASCE 7-10, Minimum design loads for buildings and other structures, American Society of Civil Engineers, ASCE, 2013.
    [5] ASCE 41-13, Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, ASCE, 2014.
    [6] Baker J.W., “Efficient analytical fragility function fitting using dynamic structural analysis,” Earthquake Spectra, 31(1), pp.579-599, 2015.
    [7] Baltzopoulos, G., Baraschino, R., Iervolino, I. and Vamvatsikos, D., “SPO2FRAG: Software for seismic fragility assessment based on static pushover,” Bulletin of Earthquake Engineering, 15, pp.4399-4425, 2017.
    [8] CSI Knowledge Base, Modal analysis (March27,2019). Retrieved from https://wiki.csiamerica.com/display/kb/Modal+analysis (April 4,2021).
    [9] Dowell, R. K., Seible, F., and Wilson, E. L., “Pivot Hysteresis Model for Reinforced Concrete Members,” Structural Journal, 95(5), pp.607-617, 1998.
    [10] FEMA 273, NEHRP Guidelines for the seismic rehabilitation ofbuildings, Federal Emergency Management Agency, Washington, D.C., 1997.
    [11] FEMA 356, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC, 2000.
    [12] Fajfar, Peter, A nonlinear analysis method for performance-based seismic design, Earthquake Spectra 16(3), 2000.
    [13] FEMA P695, Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington, DC, 2009.
    [14] FEMA P-58, Seismic performance assessment of buildings, Federal Emergency Management Agency, Washington, D.C. 2012.
    [15] Kreslin M. and Fajfar P., Seismic evaluation of an existing complex RC building, Bull Earthquake Eng. 8, 2010.
    [16] Medina, R.A. and Krawinkler, H., “Seismic demands for nondeteriorating frame structures and their dependence on ground motions,” Report No. 144, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA, 2002.
    [17] PEER-TBI Task7, Modeling and acceptance criteria for seismic design and analysis of tall buildings, PEER Report No. 2010/111, University of California at Berkeley, 2010.
    [18] SEAOC Vision 2000, Performance based seismic design of buildings, vol. I and II: Conceptual framework. Sacramento (CA): Structural Engineers Association of California, 1995.
    [19] Takeda, T., Sozen, M. A., and Nielsen, N. N, “Reinforced Concrete Response to Simulated Earthquakes,” Journal of the Structural Division, ASCE, 96(12), pp.2557-2573, 1970
    [20] Vamvatsikos D. and Cornell CA., “Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA,” Earthquake Engineering and Structural Dynamics, 35(9), pp.1097-1117, 2006.
    [21] 中華民國內政部營建署,「建築物耐震設計規範與解說」,台北,2011年。
    [22] 邱聰智、蕭輔沛、鍾立來、翁健煌、李其航、劉建均、薛強、何郁姍、陳幸均、楊智斌、翁樸文、沈文成、涂耀賢、楊耀昇、李翼安、葉勇凱、黃世建,「臺灣結構耐震評估側推分析法(TEASPA V3.1)」,國家地震工程研究中心報告,NCREE-18-0155,台北,2018年。
    [23] 邱聰智、鍾立來、涂耀賢、賴昱志、曾建創、翁樸文、莊明介、葉勇凱、李其航、林敏郎、王佳憲、沈文成、蕭輔沛、薛強、黃世建,「臺灣結構耐震評估與補強技術手冊(TEASPA V4.0)」,國家地震工程研究中心報告,NCREE-20-005,台北,2020年。
    [24] 李巧謹,「非線性靜力側推分析與非線性增量動力分析之轉換關係研究-以C型中高樓扭轉不規則建築結構為例」,成功大學土木工程學系碩士論文,2021年。
    [25] 林冠禎、邱毅宗、宋裕祺、蔡益超,「通報028:SERCB V5.1版後處理更新功能-結構容量震譜降伏點計算原則」,SERCB技術通報,第十期,頁8-14,2015年。
    [26] 胡瑋秀,「台灣混凝土彈性模數折減對結構相關設計規範的影響研究」,國立臺灣大學土木工程學系碩士論文,2018年。
    [27] 凌于哲,「鋼筋混凝土柱遲滯迴圈之模擬研究」,國立台灣大學土木工程學系碩士碩士論文,2019年。
    [28] 國家地震工程研究中心,「九二一集集大地震全面勘災精簡報告」,國家地震工程研究中心報告,NCREE-99-033,台北,1999年。
    [29] 國家災害防救科技中心與國家地震工程研究中心,「0206地震災情彙整與實地調查報告」,台北,2006年。
    [30] 國家地震工程研究中心,「2018年2月6日花蓮地震勘災報告」,國家地震工程研究中心報告,NCREE-18-005,台北,2018年。
    [31] 國家地震工程研究中心、中興工程顧問社,「臺灣結構耐震評估側推分析法 TEASPA v4.0 線上服務網頁使用手冊」,台北,2020年。
    [32] 葉勇凱、蕭輔沛、沈文成、楊耀昇、黃世建,「鋼筋混凝土建築物耐震能力詳細評估分析方法(推垮分析)」,國家地震工程研究中心報告,NCREE-09-015,台北,2009年。
    [33] 葉勇凱、周德光、蕭輔沛,「空間構架單一模態側推分析之探討」,國家地震工程研究中心報告,NCREE-11-029,台北,2011年。
    [34] 葉勇凱、周德光,「以土木404-100設計例探討非線性靜力與動力分析」,國家地震工程研究中心報告,NCREE-16-013,台北,2016年。
    [35] 蔡益超、宋裕祺、謝尚賢,「建築物耐震評估法之修訂及視窗化研究」,內政部建築研究所,台北,2005年。
    [36] 劉坤松、蔡義本,「以921集集地震之建築物強震紀錄探討大樓高層震度的放大效應」,中華民國建築學會,建築學報,第61期,頁151-173,2007年。
    [37] 蕭輔沛、蔡仁傑、翁樸文、沈文成、徐侑呈、周德光、翁元滔、簡文郁、林佳蓁、劉勛仁,「臺灣鋼筋混凝土結構耐震評估非線性動力分析手冊(TEASDA V1.0)」,國家地震工程研究中心報告,NCREE-21-001,台北,2021年。
    [38] 謝瑋桓,「中高樓建築機率式耐震與倒塌風險評估之研究」,成功大學土木工程學系碩士論文,2017年。
    [39] 謝瑋桓、盧煉元、蕭輔沛、湯宇仕、黃尹男「中高樓結構機率式倒塌風險評估法之應用研究」,結構工程,三十三卷,第二期,頁89-120,6月刊,2018年。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE