簡易檢索 / 詳目顯示

研究生: 吳晨渝
Wu, Chen-Yu
論文名稱: 基於層次協調實現多傳送接收點傳輸功能之系統層級研究
A System-­level Study of Multi­TRP Transmission Function Based on Layer Coordination
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 39
中文關鍵詞: 單用戶多輸入多輸出多傳輸接收點聯合傳輸層次協調
外文關鍵詞: Single­user MIMO, Multi­TRP, Joint Transmission, Layer coordination
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多傳送接收點的網路中,細胞間的干擾對於提升頻譜效率來說,一直都是一個很大的障礙。為了解決細胞間的干擾問題,3GPP 在 Release 11 中,提出了協調多點的方法,其中下行協調傳輸模式的聯合傳輸,可以透過傳送接收點的共同服務,將干擾的信號源轉為有效的信號源,藉以提升信號能量並且降低細胞間的干擾影響。聯合傳輸又可分成兩種模式,分別是同調聯合傳輸及非同調聯合傳輸。為了簡化系統設計,我們採用較為實際的非同調聯合傳輸,為主要的傳輸模式。過去的論文中,一般都是在探討單天線的聯合傳輸,對於多天線的聯合傳輸研究,比較少有著墨,如果能善加利用多天線的優點,例如多樣性增益及空間多工性增益,可以有效提升系統效能。因此,在非同調的聯合傳輸下,將分別利用不同的傳輸模式,達到多樣性增益及空間多工增益的效果。參與協調的傳送接收點可以進行多層次的傳輸,所以彼此間的層次分配,也是我們會考慮到的要點。除了層次協調外,我們會考慮到系統進行傳輸時的步驟,包含傳送接收點的分群、決定可以接受聯合傳輸的用戶及排程方法,此外,傳送接收點必須進行共同排程,分群可以減少共同排程的複雜度,然而,並不是所有用戶需要接受聯合傳輸,因此我們利用參考訊號的接收能量以及分群的限制,挑選出需要聯合傳輸的用戶。為驗證系統效能,我們採用按照 3GPP的規範所建立的模擬器進行系統層級模擬,模擬結果,將會呈現不同聯合傳輸模式的比較,用以觀察多輸入多輸出的聯合傳輸對於頻譜效率的改善。

    In multi-­TRP network, inter-­cell interference (ICI) strictly limits spectral efficiency. Coordinated multi­point (CoMP) is proposed to solve the ICI problem. Joint transmission (JT), which turns the interference signal into useful signal is one of the downlink transmission mode in CoMP. In general, JT is divided into coherent JT and non­-coherent JT. In order to simplify the system design, non­-coherent JT is more practical than coherent JT. In this thesis, the performance of non­-coherent JT with multiple-­input multiple-­output (MIMO) is investigated. The conventional JT mainly focuses on the user equipment (UE) with single antenna and the coordinated base stations (BSs) send the same signal to UE. By leveraging the merits of multiple antennas, such as diversity gain and spatial multiplexing gain, the spectral efficiency would be improve substantially. However, the preferred transmitted data stream of the coordinated BSs might be different so the layer coordination is required in different JT modes. A system ­level study is conducted in this work. First, the clustering method is used to define the co­-scheduled BSs. Because not all the UEs need JT, a decision rule based on reference signal received power (RSRP). Moreover, the scheduling method based on proportional fair scheduling with different clustering method is proposed. The mentioned transmission processes are implemented in a system­ level simulator, which is fully compiled with the 3GPP specification. The simulation results are presented to demonstrate the improvement of spectral efficiency in different JT mode with MIMO.

    Chinese Abstract i Abstract ii Acknowledgement iii Table of Contents iv List of Figures vi List of Tables vii List of Symbols ix List of Acronyms xi 1 Introduction 1 1.1 Contribution and Problem Statement 1 1.2 Thesis Structure 2 2 Related Work 3 2.1 CoMP with Multiple Antennas 3 2.2 Joint Transmission 4 2.3 Base Station Clustering 4 3 System Model 6 3.1 Channel Model 6 3.2 Network Model 9 3.2.1 UE Attachment Procedure 9 3.2.2 Clustering Method 10 3.3 Signal Model 11 3.3.1 Non­-Joint Transmission 12 3.3.2 JT-­Diversity 14 3.3.3 JT­-Multiplexing 14 4 Proposed Scheme 16 4.1 Joint Transmission Process 17 4.2 Estimate RI and PMI 18 4.2.1 Non-­JT UE 18 4.2.2 Joint Transmission UE 19 4.3 Scheduling 20 4.3.1 Subband PF 20 4.3.2 Subband PF for Intra-­site Clustering 21 4.3.3 Subband PF for Inter­-site Clustering 21 5 Results and Discussions 23 5.1 System Level Simulator­-WiSE 23 5.2 Simulation Setup 24 5.2.1 Parameters 24 5.2.2 Cluster 25 5.3 Performance of Single JT UE 25 5.4 Performance of JT 27 5.4.1 Impact of Layer Configurations on JT 27 5.4.2 Different Pairing Methods in JT­-Multiplexing 28 5.4.3 Impact of Scheduling Schemes 29 5.4.4 Impact to MCS 30 5.4.5 Impact to UE Spectral Efficiency 31 5.4.6 Impact of the Backhaul Delay 32 5.4.7 Comparison of JT UE in Different JT Modes 34 5.4.8 Cell Spectral Efficiency in Different Transmission Modes 34 6 Conclusion and Future Work 36 6.1 Conclusions 36 6.2 Future Works 37 References 38

    [1] H. Zhang, H. Dai, and Q. Zhou, “Base station cooperation for multi-user mimo: Joint transmission and bs selection,” in Proc. of the 2004 Conference on Information Sciences and Systems, (Princeton University, Princeton, NJ), Mar. 17–19, 2004. BIBLIOGRAPHICAL NOTES 43.
    [2] A. Tolli, H. Pennanen, and P. Komulainen, “SINR balancing with coordinated multi-­cell transmission,” in Proc. 2009 IEEE Wireless Communications and Networking Conference, April 2009, pp. 1–6.
    [3] B. Halvarsson, E. Karam, M. Nyström, R. Pirinen, A. Simonsson, Qiang Zhang, and P. Ökvist, “Distributed MIMO demonstrated with 5g radio access prototype,” in Proc. 2016 European Conference on Networks and Communications (EuCNC), June 2016, pp. 302–306.
    [4] N. H. Mahmood, K. I. Pedersen, and P. Mogensen, “Interference aware inter­-cell rank coordination for 5g systems,” IEEE Access, vol. 5, pp. 2339–2350, 2017.
    [5] Y. Zhang, J. Ding, M. Kwan, J. Ni, E. K. C. Tsang, Y. R. Li, and J. Li, “Measurement and evaluations of coherent joint transmission for 5g networks,” in Proc. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), June 2017, pp. 1–5.
    [6] S. Wu and Y. Qi, “Centralized and distributed schedulers for non­-coherent joint transmission,” in Proc. 2018 IEEE Globecom Workshops (GC Wkshps), Dec 2018, pp. 1–6.
    [7] A. Papadogiannis, D. Gesbert, and E. Hardouin, “A dynamic clustering approach in wireless networks with multi­cell cooperative processing,” in Proc. 2008 IEEE International Conference on Communications, May 2008, pp. 4033–4037.
    [8] V. Garcia, Y. Zhou, and J. Shi, “Coordinated multipoint transmission in dense cellular networks with user­centric adaptive clustering,” IEEE Transactions on Wireless Communications, vol. 13, no. 8, pp. 4297–4308, Aug 2014.
    [9] Jingjing Zhao, Tiankui Zhang, Zhimin Zeng, Qiubin Gao, and Shaohui Sun, “An overlapped clustering scheme of coordinated multi-­point transmission for lte­a systems,” in Proc. 2012 IEEE 14th International Conference on Communication Technology, Nov
    2012, pp. 479–484.
    [10] M. Liu, B. Li, and Z. Tong, “Cell clustering and resource allocation scheme for CoMP SU­-MIMO,” Wirel. Pers. Commun., vol. 69, no. 4, pp. 1399–1411, Apr 2013. [Online]. Available: http://dx.doi.org/10.1007/s11277­012­0641­3
    [11] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.901, 01 2018, version 14.3.0. [Online]. Available: http://www.3gpp.org/DynaReport/38901.htm
    [12] 3GPP, “Study on 3D channel model for LTE,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 36.873, 01 2018, version 12.7.0. [Online]. Available:
    http://www.3gpp.org/DynaReport/36873.htm
    [13] Ericsson, “Intra-­site vs. inter­-site clustering for NC­JT and DPS in Dense,” 3rd Generation Partnership Project (3GPP), 3GPP TSG RAN WG1 Meeting R1­1813612, Nov. 2018.
    [14] 3GPP, “Enhanced performance requirement for LTE User Equipment (UE),” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 36.829, 01 2013, version 11.1.0. [Online]. Available: http://www.3gpp.org/DynaReport/36829.htm
    [15] C. C. Tsai and C. K. Jao, “MMSE Receiver & Capacity Derivation and MMSE IRC Receiver Derivation,” Industrial Technology Research Institute (ITRI), Tech. Rep., June.
    2018.
    [16] S. Brueck, L. Zhao, J. Giese, and M. A. Amin, “Centralized scheduling for joint transmission coordinated multi­point in lte­advanced,” in Proc. 2010 International ITG Workshop on Smart Antennas (WSA), Feb 2010, pp. 177–184.
    [17] Ericsson, “Multi­TRP transmission in NR,” 3rd Generation Partnership Project (3GPP), 3GPP TSG RAN WG1 Meeting R1­1813612, Oct. 2018.
    [18] C. K. Jao, C. Y. Wang, T. Y. Yeh, C. C. Tsai, L. C. Lo, J. H. Chen, W. C. Pao, and W. H. Sheen, “Wise: A system­level simulator for 5g mobile networks,” IEEE Wireless Communications, vol. 25, no. 2, pp. 4–7, April 2018.
    [19] 3GPP, “Summary of email discussion [ITU­R AH 01] Calibration for self­evaluation,” 3rd Generation Partnership Project (3GPP), 3GPP TSG RAN ITU­R Ad Hoc RT170019, Dec. 2017.

    下載圖示 校內:2024-07-30公開
    校外:2024-07-30公開
    QR CODE