| 研究生: |
張佑璘 Chang, Yu-ling |
|---|---|
| 論文名稱: |
離散集群存活資料之等比例治癒模型 Proportional cure models for clustered discrete survival data |
| 指導教授: |
嵇允嬋
Chi, Yun-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 離散存活資料 、等比例治癒率模型 、邊際方法 、治癒個體 、集群資料 |
| 外文關鍵詞: | clustered data, marginal approach, cure, discrete survival data, proportional cure model |
| 相關次數: | 點閱:54 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在植牙研究中,研究者欲了解患者在植入假牙後,假牙植體是否發生併發症,並試圖探討患者植入假牙後發生併發症的危險因子。由於患者在進行植牙手術時,植入的牙體數目略有異同,所以蒐集到的實際資料將為集群或多變量資料(clustered 或multivariate data)。此外,由於多數患者的假牙植體不會發生術後併發症,這些個體被稱之為治癒個體(cure 或 non-susceptible)。一般而言,集群內的資料間將具一定的相關程度。然而,考慮治癒率的文獻還僅限於單變量的離散反應變數。
本論文將針對集群離散存活資料,採用Zhao與Zhou (2008)所提出的等比例混合治癒模式,並利用Yu與Peng (2008)處理集群連續資料之想法,即先忽略集群內相關性而建構所謂邊際概似函數 (marginal likelihood function),用以求模式中的參數估計方程式,再由此估計方程式求參數估計量。接著利用模擬的方式來驗證參數估計量的一致性,並在不同設限比例與不同集群數下探討參數估計量之表現。最後將此推廣方法應用於實際植牙資料,以協助探討影響植牙併發症的危險因子。
One of the goals of a dental implant study (Wen et al., 2008) is to identify the risk factors associated with dental implant failure based on a 7-years follow up. Since Wen et al. applied life-table method to estimate failure rate, the failure times are only available in yearly interval which can be regard as clustered discrete-time survival data.
Therefore, this thesis applied a marginal regression approach applied by many authors, such as Lipsitz et al. (1994), and Yu and Peng (2008), to estimate the parameters in proportional cure model developed in Zhao and Zhou (2008). The accuracy of the estimators is investigated by a simulation study. When the number of clusters are large enough, the bias of the estimators of regression parameters become smaller. Finally, the proportional cure model is applied to the dental implant data set to identify the risk factor associated with dental implant failure.
1. Cai, J. and Shen, Y., (2000). Permutation tests for comparing marginal survival functions with clustered failure time data. Statistics in Medicine 19, 2963-2973.
2. Clayton, D.G., (1985). Multivariate generalizations of the proportional hazards model (with discuss).. Journal of the Royal Statistical Society, Series A 148,82-117.
3. Kalbfleisch , J. D., and Prentice, R. L.(2002). The statistical analysis of failure time data. (2nd edn) Wiley : New York.
4. Philip Rabinowitz (1970). Numerical Methods for Nonlinear Algebraic Equations. Gordon and Breach, Science Publishers Ltd. 12 Bloomsbury Way London W.C.1
5. Lipsitz, S. R., Dear, K.B.G., Zhao, L., (1994). Jacknife estimators of variance for parameter estimates from estimating equations with applications to clustered survival data. Biometrics 50, 842-846.
6. Chatterjee, N., Shih, J., (2002). A bivariate cure mixture approach for modeling familial association in disease. Biometrics 71, 340-344.
7. Wen, M.J., Tseng, C.C., Lee, C.K., (2008). Life table analysis for evaluating curative-effect of one-stage non-submerged dental implant in Taiwan. Journal of Data Science 6, 591-599.
8. Yu, B., and Peng, Y.(2008). Mixture cure models for multivariate survival data. Computational Statistics & Data Analysis 52, 1524-1532.
9. Zhao, X., and Zhou, X. (2008). Discrete-time survival models with long-term survivors. Statistics in Medicine 27, 1261-1281.