| 研究生: |
蔡梅雲 Tsai, Mei-Yun |
|---|---|
| 論文名稱: |
陰-陽離子型界面活性劑模板結合四乙基氧矽合成各種型態之中孔洞氧化矽材料 Synthesis of Mesoporous Silica with Different Morphologies by Using Cationic-Anionic Surfactant Template and Tetraethyl orthosilica |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 界面活性劑 、中孔洞氧化矽 、生物成礦 |
| 外文關鍵詞: | Surfactant, Mesoporous silica, Biomineralization |
| 相關次數: | 點閱:104 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以生物成礦的概念為出發點,將生物成礦的原理引入無機材料的合成,藉由有機物作為模板,去調控無機物的形成,製備具有獨特結構特點(如中空、多孔)及奇特之外觀型態(如矽藻)的有機-無機複合材料。
本研究採用陰-陽離子型界面活性劑作為有機模板,在特定的pH值(1.0 ~ 3.0),溫度為接近室溫(40℃)之反應條件下結合無機物(四乙基氧矽,TEOS),合成出不同型態之中孔洞氧化矽材料。選擇pH值在1.0 ~ 3.0來作為合成條件,因為此區域的氧化矽聚合速率較為緩慢,可藉此控制氧化矽的核種大小及氧化矽縮合速率,使有機模板及無機物具有足夠的時間慢慢堆疊成為各種不同的型態。
藉由採用不同種類的有機模板(CnTMAX-SDS template)與無機物(TEOS)經由分子的自組裝行為合成出各種特殊型態及具有孔洞結構(中孔洞)之氧化矽材料。調控可能影響氧化矽型態之因素(e.g.:TEOS的添加量、系統水含量、陰-陽離子型界面活性劑之莫耳比等)來探討這些因素對於中孔洞氧化矽型態的影響。
本研究之實驗成果依不同有機模板的種類來呈現,以C18TMAC-SDS template結合TEOS合成氧化矽,依氧化矽型態可分為: (一)具有紋路片狀型態、(二)不具紋路的小片狀型態及(三)纖維狀型態。以C14TMAB-SDS template結合TEOS合成氧化矽,依氧化矽型態可分為: (一)皺摺狀花朵型態、(二)中空泡泡狀型態;以C16TMAB-SDS template結合TEOS合成氧化矽,依氧化矽型態可分為: (一)捲曲片狀型態、(二)纖維狀型態。
本論文最後一部份為嘗試將金奈米粒子置入中孔洞氧化矽材料合成含有金奈米粒子中孔洞氧化矽材料。主要是採用陽離子型界面活性劑CnTMAB做保護劑,以NaBH4溶液將金的前驅物(四氯金離子,AuCl4-)還原成金奈米粒子,以C16TMAB-SDS-P123-water作為有機模板,於近中性(pH 5.0)的反應條件下結合矽酸鹽,合成含金奈米粒子中孔洞氧化矽材料,未來可應用於催化CO的氧化反應及其它之催化反應上。
Biomineralization is a study on the formation, structure and properties of inorganic solids deposited in biological systems (i.e. organic templates; phospholipids). In the nano-world of life, a new type of chemistry brings together the synthesis and construction of hard and soft matter for the design of functionalized inorganic-organic nanocomposites. According the principles and concepts of biomineralization, we, thus, develop a new bio-mimic method to synthesize mesoporous silica with different morphologies.
This research provides a simple method to synthesis mesoporous silica with different morphologies by using cationic-anionic binary surfactants (CnTMAX and SDS) as the organic template and tetraethyl orthosilicate as silica source. At proper pH value of 1.0~3.0 and temperature ( 40 oC), the mesoporous silicas with different morphologies can be easily synthesized. In addition, we changed several experimental conditions including pH value, CnTMAB/SDS molar ratio, water content and other factors, to discuss the effect each factor on the morphologies of mesoporous silica.
When using the organic templates of different surfactants compositions, mesoporous silicas with different morphologies have been prepared. For example, with C18TMAC-SDS template, the fiber-like, gyroid-like and platelet-like mesoporous silica can be obtained. It is interesting that the platelet-like mesoporous silica has curved-line pattern. When using C14TMAB-SDS mixture as template, flowers-like, and vesicle-like mesoporous silicas have been produced. In addition, curl-plate shaped and fiber-like mesoporous silicas were obtained form silicification of the C16TMAB-SDS template in the silicate solution. Based on these results, it is reasonably supposed that the morphologies could be tailored by using proper surfactant compositions.
In the last part, the synthetic method and compositions of Au NPs@Mesoporous silica has been provided. This Au NPs@Mesoporous silica might by applied as the catalyst toward the oxidizing reaction of CO and other molecules.
1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710.
2. J. S Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T – W. Chu, D. H. Olson, E. W Sheppard, S. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
3. Heuer A H, Fink D J, Laraia V J, Arias J L, Calvert P D, Kendall K, Messing G L, Blackwell J, Rieke P C, Thompson D H, Wheeler A P, Veis A, Caplan A I, Science, 1992, 255, 1098.
4. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
5. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
6. C.-G. Wu, T. Bein, Chem. Mater., 1994, 6, 1109.
7. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
8. Wang, W.; Xie, S.; Zhou, W.; Sayari, A. Chem. Mater. 2004, 16, 1756.
9. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao. Angew. Chem., 2003, 115 , 3254.
10. A. E. Garcia – Bennett, S. Williamsin, P. A. Wright and I. J. Shannon. J. Meter. Chem, 2002, 12, 3533.
11. A. Vinu, V. Murugesan and M. Hartmann. Chem. Meter., 2003, 15, 1385.
12. H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49, 981.
13. V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
14. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
15. Q. Huo, D. I. Margolese and G. D. Stucky. Chem. Mater., 1996, 8, 1147.
16. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson and A. Monnier. Chem. Mater., 2001, 13, 2247.
17. Z. Zhang, Y. Han, Feng – Shou Xiao, S. Qiu, L. Zhu, R. Wang, Y. Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei. J. Am. Chem. Soc., 2001, 123, 5014.
18. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
19. Y. Han, S. Wu, Y. Sun, D. Li and Feng – Shou Xiao. Chem. Mater., 2002, 14, 1144.
20. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and F. –S. Xiao. Angew. Chem. Int. Ed. 2001, 7, 1258.
21. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G. D. Stukey. Chem. Mater., 2002, 12, 2448.
22. A. Walcarius, M. Etienne and B. Lebeau. Chem. Mater., 2003, 15, 2161.
23. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem., 2004, 14, 951.
24. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature., 2000, 48, 289.
25. E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
26. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem. Int. Ed. 2003, 42, 413.
27. F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
28. T. F. Todros, Surfactants, Academic Press : London, 1984.
29. B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
30. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
31. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 1264.
32. L. L. Brasher, K. L. Herrington, E. W. Kaler, Langmui 1995, 11, 4267.
33. M. T. Yatcilla, K. L. Herrington, L. L. Brasher, E. W. Kaler, S. Chiruvolu, J. A. Zasadzinski , J. Phys. Chem. 1996, 100,5874.
34. K. Tsuchiya, H. Nakanishi, H. Sakai, M. Abe, Langmuir, 2004, 20, 2117.
35. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
36. C. J. Brinker, G. W. Scherer, Journal of Non-Crystalline Solids, 1985, 70, 301.