簡易檢索 / 詳目顯示

研究生: 馬浩翔
Ma, Hao-Hsiang
論文名稱: 提高自平衡Q與增益切換雙脈衝重複率之研究
Study on high pulse repetition rates of self-balanced Q- and gain-switching
指導教授: 蔡宗祐
Tsai, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 88
中文關鍵詞: 雷射雙脈衝Q切換增益切換脈衝重複率
外文關鍵詞: laser, gain-switch, Q-switch, pulse repetition rate
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將針對一個飽和吸收Q和增益雙切換之全摻鉺全光纖雷射系統來進行模擬,並分析如何提高其脈衝重覆率至100kHz以上。此雷射系統的結構是由980nm的連續波雷射激發全Er3+雷射並自動Q切換與增益切換。論文中有推導出一組雙波長光子微分方程式可以用來模擬分析在雙波長光子脈衝雷射系統內的雙波長光子、增益居量及吸收居量的相互關係,並探討調整激發能量、增益光纖與可飽和吸收體的長度、第一與第二共振腔的長度以及反射率對雙波長光子脈衝雷射系統脈衝重複率、脈衝寬度、脈衝功率峰值與脈衝能量的影響。

    The purpose of the study is to simulate and analyze a 980-nm CW-pumped passively pulsed all-Er3+ all-fiber laser and maximize the pulsing repetition rate beyond 100kHz. The laser was saturable-absorber Q-switched at 1510 nm using the mode-field-area mismatch method with the saturable-absorber in an intra-cavity gain-switched at 1570 nm. A set of rate equations is established to model the interaction between the photons of two wavelengths and the populations of the gain and the absorber fibers. In the thesis, the variables of the pump power, the gain and SAQS fiber lengths, the resonator lengths and the reflectivity in relation to the outputs of the repetition rate, the pulse duration, the peak power and pulse energy were numerically simulated and discussed.

    目錄 第1章 緒論 1 1-1前言 1 1-2 文獻探討 3 1-3研究動機與方法 5 1-4論文架構 8 第2章 被動式Q切換雷射系統的原理探討 9 2-1波長1510nm脈衝雷射產生原理 9 2-1-1鉺原子能階探討 9 2-1-2 產生被動式Q切換脈衝雷射的必要條件 12 2-2 雙脈衝雷射系統產生原理 17 2-2-1雙脈衝系統的優點與實驗架構 17 2-2-2雙脈衝雷射系統理論 18 2-2-3 增益切換對吸收居量恢復機制的強化 20 2-3 模場面積不匹配技術(Mode Field Areas Mismatch) 21 2-4.雙光子之波長對系統效率的影響 23 第3章 系統模擬與分系 25 3-1模擬架構架設與執行模擬 25 3-1-1模擬架構架設 25 3-1-2架構模擬執行 28 3-2 三種主要參數對脈衝重複率的影響 30 3-2-1激發能量對脈衝重複率的影響 30 3-2-2.增益光纖長度對脈衝重複率的影響 34 3-2-3 可飽和吸收體的初始吸收值對脈衝重複率的影響 38 3-3 四種次要參數對脈衝重複率的影響 42 3-3-1 第一共振腔長度對脈衝重複率的影響 42 3-3-2 第二共振腔長度對脈衝重複率的影響 48 3-3-3 第一共振腔反射率對脈衝重複率的影響 52 3-3-4 第二共振腔反射率對脈衝重複率的影響 55 第4章 改變波長對脈衝系統的影響 59 4-1 Q-切換脈衝雷射在不同波長下的模擬與分析 59 4-2 增益切換脈衝雷射在不同波長下的模擬與分析 64 第5章 結論 67 5-1 模擬結果討論 67 5-2未來展望 70 參考文獻 71 附錄A 75 A-1光子數方程式(The rate equation of resonant photons ) 75 A-2 第二共振腔光子數方程式 (The rate equation of second resonant photons) 79 A-3 增益居量方程式(The rate equation of population inversion)(Ng) 83 A-4 吸收居量方程式(The Rate equation of absorption population )(Na) 87

    [1] H. H. Kee, G. P. Lees and T. P. Newson, “Narrow linewidth CW and Q-switched erbium-doped fibre loop laser,” Electron. Lett. 34, 1318-1319 (1998).
    [2] J. A. Álvarez-Chávez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A: Clarckson and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25, 37-39 (2000).
    [3] R. Paschotta, R. Haring, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 μm,” Opt. Lett. 24, 388 (1999).
    [4] M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, and W. A. Clarkson, “Compact diode-pumped passively Q-switched tunable double-clad fiber laser,” Opt. Lett. 27, 1980-1982 (2002).
    [5] J. Y. Huang, H. C. Liang, K. W. Su, and Y. F. Chen, “High power passively Q-switched ytterbium fiber laser with Cr4+:YAG as a saturable absorber,” Opt. Express 15, 473-479 (2007).
    [6] A. L. Schawlow, and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112:1940, (1958).
    [7] F. J. McClung, and R. W. Hellwarth, “Giant optical Pulsation from ruby,” J. Appl. Phys. Vol. 33 No. 3, (1961).
    [8] W. G. Wagner, and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys., vol. 34, p.2040, (1963).
    [9] K. C. Kao, G. A. Hockham "Dielectric-fibre surface waveguides for optical frequencies," Proc. IEEE 113 (7): 1151–1158. (1966).
    [10] T. H. Maiman, “Stimulated optical radiation in ruby masers,” Nature 187:493, (1960).
    [11] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, in Digest of
    Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., Jan 1987), Paper W12; R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, Electron. Lett. 22,159 (Sept1986)
    [12] P. Roy, D. Pagnoux, L. Mouneu and T. Midavaine, “High efficiency 1.53-μm all-fibre pulsed source based on a Q-switched erbium doped fibre ring laser,” Electron. Lett. 33, 1317-1318 (1997).
    [13] D. W. Huang, W. F. Liu and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photonics Technol. Lett. 12, 1153-1155 (2000).
    [14] D. Zalvidea, N.A. Russo, R. Duchowicz, M. Delgado-Pinar, A. Díez, J.L. Cruz and M.V. Andrés, “High
    repetition rate acoustic-induced Q-switched all-fiber laser,” Opt. Commun. 244, 315-319 (2005).
    [15] M. Delgado-Pinar , D. Zalvidea, A. Díez, P. Pérez-Millán and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14, 1106 (2006).
    [16] Y. Kaneda, Y. Hu, C. Spiegelberg, J. Geng and S. Jiang, “Single-frequency, all-fiber Q-switched laser at 1550 nm,” presented at OSA Topical Meeting on Advanced Solid-State Photonics, (2004).
    [17] N. A. Russo, R. Duchowicz, J. Mora, J. L. Cruz and M. V. Andrés, “High-efficiency Q-switched erbium fiber laser using a Bragg grating-based modulator,” Opt. Commun. 210, 361-366 (2002).
    [18] P. Pérez-Millán, A. Díez, M. V. Andrés, D. Zalvidea, and R. Duchowicz, "Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating," Opt. Express 13, 5046-5051 (2005).
    [19]D.M. Andrauskas and C. Kennedy, in Advanced solid-state lasers, G.
    Dubé and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America) (1991).
    [20] L. Tordella, H. Djellout, B. Dussardier, A. Saissy, and G. Monnom, “High repetition rate passively Q-switched Nd3+:Cr4+ all-fibre laser” Electron. Lett. 39, 1307 (2003).
    [21] P. Adel, M. Auerbach, C. Fallnich, S. Unger, H.-R. Müller and J. Kirchhof, “Passive Q-switching by Tm3+ co-doping of a Yb3+ fiber laser,” Opt. Express 11, 2730-2735 (2003).
    [22] A. Fotiadi, A. Kurkov, and I. Razdobreev, "All-fiber passively
    Q-switched ytterbium laser," CLEO/Europe-EQEC, conference on Lasers and Electro-Optics Europe,p.515 (2005).
    [23] A. S. Kurkov, E.M. Sholokhov and O.I. Medvedkov, “All fiber Yb-Ho pulsed laser,” Laser Phys. Lett. 6, 2, 135–138 (2009).
    [24] V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, "Yb–Bi pulsed fiber lasers," Opt. Lett. 32, 451-453 (2007).
    [25] T. -Y. Tsai, Y. -C. Fang and S. -H. Hung, “Passively Q-switched erbium all-fiber lasers by use of thulium-doped saturable-absorber fibers,” Opt. Express 18, 10049-10054 (2010).
    [26] T. -Y. Tsai, Y. -C. Fang, Z. -C. Lee and H. -X. Tsao, “All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch,” Opt. Lett. 34, 2891-2893 (2009).
    [27] T. -Y. Tsai and Y. -C. Fang, “A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser,” Opt. Express 17, 21628–21633 (2009).
    [28] W. de Rossi, F. E. Costa, N. D. Vieira Jr., N. U. Wetter, S. P. Morato, T. T. Basiev, V. A. Konyushkin, and S. B. Mirov, “Mode-locking operation of a pulsed Nd:YAG laser with F2-:LiF color-center crystal in a dual configuration,” Appl. Opt. 31, 15, 2719 (1992).
    [29] T. -Y. Tsai and Y. -C. Fang, H. -M. Huang, H. -X. Tsao, and S. -T. Lin, "Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm," Opt. Express 18, 23523-23528 (2010).
    [30] Tzong-Yow Tsai, Hao-Hsiang Ma, Yen-Cheng Fang, Hong-Xi Tsao, and Shih-Ting Lin, "Self-balanced Q- and gain-switched erbium all-fiber laser," AIP Advances Vol. 1, 032155, Sep. 2011.

    下載圖示 校內:2014-07-25公開
    校外:2014-07-25公開
    QR CODE