簡易檢索 / 詳目顯示

研究生: 張秉翰
Chang, Ping-Han
論文名稱: 具可調整骨釘角度之創新骨板設計
A Novel Bone Plate Design for Enabling Bone Screw Angle Adjustment
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 115
中文關鍵詞: 鎖定骨板系統緊迫固定拔出測試剪切測試3D 列印
外文關鍵詞: locking plate, interference fit, pullout, shear, 3-D printing
相關次數: 點閱:56下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,骨釘骨板系統的使用已經成為治療骨折的主要方法,隨著多元化的骨折種類和多變的骨頭構造,傳統的骨釘骨板系統並無法完全滿足使用上的需求,因此,新一代骨釘骨板系統陸續被研發出來,但這些設計尚有著鎖付方向不可調整、骨釘骨板冷焊與鎖付力量過高等缺點待改善。
      本論文藉著3D列印可一體成形製作成品之特色,設計出了可調整鎖付方向並將之固定的骨板系統,此設計解決了無法調整鎖付方向、調整之方向無法固定、無法避免人為鎖入造成之冷焊等問題,也保留了骨釘骨板間以螺紋固定的設計以及增加了降低鎖付力不均勻的設計,並採用珍珠狀骨板增加抗彎曲強度,接著進行模擬與實驗評估此設計襯墊與骨板介面之各項性質。模擬部分為鎖入模擬、拔出模擬及剪切模擬,評估不同干涉量時的固定能力並選出欲測試的干涉量為20 μm。接著針對20 μm的骨板進行鎖入測試、拔出測試及剪力測試。本設計之鎖入扭力約為2.5 N·m,此扭力小於一般骨釘鎖入之操作扭力;抗拔出力數值約為2.5 kN,大於文獻中骨釘與骨頭介面之抗拔出力;抵抗角度改變之臨界力矩約為1 N·m。本論文針對骨釘與骨板接觸介面建立出一套評估方法,此方法將可被應用在更多不同的設計上。

    In this research a locking bone plate system with inserted angle fixators for adjusting bone screw angle is developed. Advantages of the design includes locking between the bone plate and screw, adjustable angle up to ±20° for bone screw, compatibility with minimally invasive surgery, reduced risk in cold-welding failure, improved uniformity in bone screw axial forces, and higher plate bending stiffness. A series of finite element based numerical procedures were established to evaluate the performance of the angle fixator design. Based on the numerical evaluations, a preferred interference value of 20 μm was selected for the locking of the angle fixator to bone plate. A set of Ti-6Al-4V bone plates were fabricated by using selective laser melting (SLM) additive manufacturing process. Experiments were conducted by using these plates to evaluate the lock-in torque for the interference fit, the pullout force for the assembly to separate, and the bone screw-shear induced critical moment for loosening the bone plate-to-angle fixator connection. It was shown that the lock-in torque for the interference fit is around 2.5 N·m, which is lower than the typical limit of bone screw fixation, and would reduce the risk of cold-welding. The pullout force required to separate the plate-to-screw connection is higher than 2 kN, and the remote shear induced critical moment to loosen the connection is 1 N·m. These performance indexes compare well to conventional bone plate and screw designs, and validate the design. The numerical and experimental procedures developed in this study may further be applied to investigate the performance of other new bone plate design.

    摘要 II Abstract III 目錄 XIV 表目錄 XVI 圖目錄 XVIII 第一章 緒論 1 1.1前言與研究動機 1 1.2 文獻回顧 8 1.3 金屬雷射積層製造簡介 16 1.4 研究目的與論文架構 18 第二章 骨釘設計 21 2.1 設計介紹 21 2.2 設計特色 29 第三章 模擬分析 33 3.1模擬流程 33 3.2 模擬設定 35 3.3 收斂性分析 40 3.4 干涉模擬 42 3.5 鎖入模擬 47 3.6 拔出與剪切模擬 56 3.7 骨板外徑影響分析 67 第四章 實驗分析 70 4.1 試件準備與幾何量測 70 4.2 鎖入扭力測試 83 4.3 拔出與剪切測試 85 4.3.1 機台設備 85 4.3.2 實驗夾具與方法 86 4.3.3實驗結果與討論 90 第五章 結論及未來展望 107 參考文獻 110 附錄 114 A.1 襯墊之工程圖 114 A.2 骨板之工程圖 115

    [1] P. Cronier, G. Pietu, C. Dujardin, N. Bigorre, F. Ducellier, and R. Gerard, “The concept of locking plates” Orthopaedics & Traumatology: Surgery & Research, vol. 96, pp. S17-S36, 2010
    [2] J.-L. Lin. (2012, December 16). Introduction of Locking Plate Systems [online].Available:http://oplab.im.ntu.edu.tw/vetweb/system/application/views/ContinuingEducation/CE_136.pdf
    [3] S. Van Nortwick, J. Yao, and A. Ladd, “Titanium integration with bone, welding, and screw head destruction complicating hardware removal of the distal radius : Report of 2 cases” The Journal of Hand Surgery, vol. 37, pp. 1388-1392, 2012
    [4] N. Schwarz, S. Euler, M. Schlittler, T. Ulbing, P. Wilhelm, G. Fronho¨fer, and
    M. Irnstorfer, “Technical complications during removal of locking screws
    from locking compression plates: a prospective multicenter study” European Journal of Trauma and Emergency Surgery, vol. 39, pp. 339-344, 2013
    [5] M. Gorhan, M. Jacene, and E. Kolb, “Locking bone screw and spinal plate system ,” U.S. Patent 84,603,48B2, January, 11, 2013.
    [6] S.-M. Hou, C.-C.Hsu, J.-L. Wang, C.-K. Chao, and J. Lin , “Mechanical tests and finite element models for bone holding power of tibial locking ” Clinical Biomechanics, vol. 19, pp. 738-745, 2004
    [7] 賴鈞瑞,鎖定式骨板於植入物破壞與骨折固定度之研究:有限元素分析,國立台灣科技大學,碩士論文,2012
    [8] M.Pochrzast, M.Basiaga, J. Marciniak, and M. Kaczmarek, “Biomechanical analysis of limited-contact plate used for osteosynthesis” Acta of Bioengineering and Biomechanics, vol. 16,pp. 99-105, 2014
    [9] R. O’Toole, R. Andersen, O. Vesnovsky, M. Alexander, L. Timmie Topoleski, J. Nascone, M. F. Sciadini, C. Turen, and W. A. Eglseder Jr., “Are locking screws advantageous with plate fixation of humeral shaft fractures? A biomechanical analysis of synthetic and cadaveric bone” Journal of Orthopaedic Trauma, vol. 22, pp. 709-715, 2008
    [10] C. DiPaola, J. Jacobson, H. Awad, B. Conrad, and G. Rechtine, “Screw orientation and plate type (variable- vs. fixed-angle) effect strength of fixation for in vitro biomechanical testing of the Synthes CSLP” Spine Journal, vol. 8, pp. 717-722, 2008
    [11] A. Kosiyatrakul, S. Sornpan, and S. Luenam, “Comparative Study of the Pullout Strength of the 2.4-mm AO Locking Screw, 2.0-mm AO Cortical Screw and Herbert Screw in Sawbones: A Biomechanical Study,” Journal of the Medical Association of Thailand, vol. 97, pp. S25-9, 2014.
    [12] T. Pohlemann, B. Gueorguiev, Y. Agarwal, D. Wahl, C. Sprecher, K. Schwieger, and M. Lenz, “Dynamic locking screw improves fixation strength in osteoporotic bone: an in vitro study on an artificial bone model,” International Orthopaedics, vol. 39, pp. 761-768, 2015
    [13] C.-K. Hsiao, Y.-K. Tu, Y.-J. Tsai, and S.-H. Yu, “Biomechanical evaluation on the pullout performance of cortical bone screws,” in 2015 International Symposium on Mechatronics and Biomedical Engineering & Applications, Kaohsiung, Taiwan, 2015, pp. 45-49.
    [14] ASTM Standard Specification and Test Methods for Metallic Medical Bone Screws, ASTM F543-13, 2013.
    [15] ASTM Standard Specification and Test Methods for Metallic Medical Bone Plates, ASTM F382, 2014.
    [16] Temporary mandibular condyle reconstruction plate class II special controls guideline, FDA Standard, 2013
    [17] I. A. Roberts, Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing, University of Wolverhampton, 2012.
    [18] 工研院 (2012年8月):雷射積層製造產業群聚,搶進3D列印市場。工業技術與資訊月刊。線上檢索日期:2016年6月12。網址 : https://www.itri.org.tw/chi/Content/Publications/contents.aspx?&SiteID=1&MmmID=2000&MSid=621022517727161160
    [19] Selective laser meltingⅡ [Online]. Available: http://iq-evolution.com/en/slm-centrum/selective-laser-melting-ii

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE