簡易檢索 / 詳目顯示

研究生: 陳學良
Chen, Hsueh-Liang
論文名稱: 滾輪式紅外光輔助金屬轉印技術應用於微奈米元件之製作
Roller-Based and Infrared-Assisted Metal Contact Printing Technology for Fabricating Micro- and Nano-Devices
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 72
中文關鍵詞: 微奈米圖形滾印金屬薄膜
外文關鍵詞: Micro/Nano-Pattern, Roller Imprinting, Metal Thin Film
相關次數: 點閱:137下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文發展一種新型之滾輪式紅外光輔助金屬轉印技術,利用一預先製作好的次微米或奈米等級的矽模仁當母模,矽模仁上會先蒸渡一層抗沾黏膜,再蒸鍍金屬層作為圖形轉印層,並且在基板表面沉積一層金屬薄膜當作黏著層;基板在ㄧ外加壓力下與矽模仁接觸,進行金屬層與金屬層的對壓,同時採用紅外光穿透基板後對金屬層進行加熱,讓矽模仁上的圖形轉印層與基板上的黏著層產生鍵結,因而將矽模仁上的金屬層圖形轉印到基板上。本文利用此金屬轉印技術,選用石英( Quartz )與鈮酸鋰( )二種基板,成功地將次微米與奈米等級之圖形轉印到兩種基板上,再分別進行後續蝕刻,製作出次微米與奈米等級之石英模仁與GHz 等級之表面聲波元件。
    在紅外光輔助金屬轉印實驗中,本文準備2 cm × 2 cm大小的矽模仁來當轉印的母模,採用氣相沉積的方式在矽模仁上蒸渡一層抗沾黏膜,改變矽模仁表面的鍵結能力,讓圖形轉印層容易成功;而轉印層的金屬材料為金( Au );另外,在石英基板與鈮酸鋰基板分別蒸鍍30 nm鉻( Cr )與10 nm鈦( Ti )當作轉印的黏著層,同時採用低成本的紅外燈管產生紅外光,作為金屬層轉印的加熱源,一方面成功地提昇了圖形轉印的成功率,二方面有效降低金屬轉印製程設備的成本。實驗架構方面,本文採用滾輪式轉印機構來進行金屬轉印,其優點是利用玻璃滾筒與基板進行線接觸的載重施加,同時將紅外光進行線聚焦,讓壓應力與加熱光源均壓縮在同一條線上,再藉由滾筒的連續滾動與紅外光照射,逐步地把矽模仁上的圖形完全轉印到基板。
    本文成功完成面積2 cm × 2 cm大小的金屬轉印,最小線寬為100 nm;所發展之滾輪式紅外光輔助金屬轉印技術,使用低成本的紅外燈管光源與ㄧ般實驗室常用之儀器設備,因此可以廣泛推廣與應用,突破現有次微米與奈米結構製程上的困難。

    This thesis investigates a new type of contact printing lithography method named Roller-Based and Infrared-Assisted Metal Contact Printing Technology. It utilizes a silicon mold which has some pre-fabricated micrometer/nanometer-scale features and is first deposited with a thin release layer and subsequently a thin metal film for pattern transferring. Another metal film which acts as an adhesion layer is also deposited on the substrate surface. The mold is then pressed against the substrate so that a contact pressure is exerted between the two metal films. An infrared light source incident from the substrate side heats up the metal films. Under the action of contact pressure and IR-light heating, a stronger bonding interface is formed between the two metal films and therefore, after separating the mold form the substrate, the patterned metal film defined by the surface features of the mold can be transferred from the mold to the substrate. In this study, quartz and Lithium Niobate (LiNbO3) substrates have been successfully patterned and, after appropriated etching processes, quartz molds and surface acoustic wave (SAW) devices are obtained.
    In the experiment, we prepare silicon mold with 2×2 in dimension for pattern transferring. The releasing layer is prepared by vapor deposition method so that the transfer metal layer, a gold film, is only weakly attached to the silicon mold. A 30 nm thick chromium film and a 10 nm thick titanium film are deposited on the Quartz and LiNbO3 substrates for adhesion layer, respectively. An infrared lamp is adopted as the heating source. In the experimental setup, a roller-based mechanism with a glass roller is designed and constructed. The glass roller creates a line-shaped contact pressure as well as focuses the incident infrared light into a line so that the metal-to-metal pattern transformation can be continuously carried out until the whole pattern is transferred.
    This thesis successfully demonstrates the pattern transformation on an area size of 2 × 2 with a smallest line-width of 100 nm. It should be emphasized that the proposed micro/nano-lithography method utilizes only a low-cost infrared lamp and other readily available equipments. Therefore, it does have the potential for a wide range of applications in the fabrication of micro/nano-structures.

    摘要.....................................................Ⅰ Abstract.................................................Ⅱ 目錄.....................................................Ⅳ 表目錄...................................................Ⅵ 圖目錄...................................................Ⅶ 第一章 緒論...........................................1 1-1 前言..........................................1 1-2 文獻回顧......................................1 1-2-1 冷熔接金屬轉印技術...........................1 1-2-2 雷射輔助直寫式滾印技術.......................3 1-2-3 紅外雷射輔助式金屬轉印技術...................4 1-3 研究動機與目的................................5 第二章 實驗原理與架構.................................7 2-1 滾輪式紅外光輔助金屬轉印原理..................7 2-2 滾輪式紅外光輔助金屬轉印實驗架構..............9 2-2-1 滾輪式紅外光輔助金屬轉印載台.................9 2-2-2 滾輪式紅外光輔助金屬轉印投射光源架設........14 第三章 實驗步驟......................................17 3-1 次微米級矽模仁製備...........................17 3-1-1 次微米級矽模仁製作..........................17 3-1-2 次微米級矽模仁清洗..........................23 3-1-3 次微米級矽模仁之抗沾黏膜處理................24 3-1-4 次微米級矽模仁之轉印金屬薄膜蒸鍍............26 3-2 滾輪式紅外光輔助金屬轉印製程.................29 3-3 蝕刻製程.....................................32 第四章 實驗結果與討論................................35 4-1 次微米級矽模仁製作結果.......................35 4-2 滾輪式紅外光輔助金屬轉印結果.................41 4-2-1 金屬轉印結果................................41 4-2-2 壓印參數對金屬轉印成功率影響之探討..........47 4-2-3 奈米圖形金屬轉印結果........................51 第五章 元件應用......................................55 5-1 石英模仁製作結果.............................55 5-2 表面聲波元件製作結果.........................64 第六章 結論與未來展望................................71 6-1 結論.........................................71 6-2 未來展望.....................................72 參考文獻.................................................73

    [1] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymer”, Appl. Phys. Lett. 67, 3114-3116 (1995).
    [2] P. R. Krauss and S. Y. Chou, “Fabrication of planar quantum magnetic disk structure using electron beam lithography, reactive ion etching, and chemical mechanical polishing”, J. Vac. Sci. Technol. B 13(6), 2850-2852 (1995).
    [3] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution”, Appl. Phys. Lett. 272, 85-87 (1996).
    [4] L. J. Guo, P. R. Krauss, and S. Y. Chou, “Nanoscale silicon field effect transistors fabricated using imprinting lithography”, Appl. Phys. Lett. 71, 1881-1883 (1997).
    [5] H. Ten, A. Gibertson, and S. Y. Chou, “Roller nanoimprint lithography”, J. Vac. Sci. Technol. B 16(6), 3926-3928 (1998).
    [6] M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography”, Appl. Phys. Lett. 81(23), 4431-4433 (2002).
    [7] W. Zhang and S. Y. Chou, “Fabrication of 60-nm transistors on 4-in wafer using nanoimprint at all lithography levels”, Appl. Phys. Lett. 83(8), 1632-1634 (2003).
    [8] W. Wu, J. Gu, H. X. Ge, C. Keimel and S. Y. Chou, “Room-temperature Si single-electron memory fabricated by nanoimprint lithography”, Appl. Phys. Lett. 83(11), 2268-2270 (2003).
    [9] S. Y. Chou, and P. R. Krauss, “Imprint Lithography with Sub-10 nm Feature Size and High Throughput”, Microelectronic Engineering 35, 237-240 (1997).
    [10] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography”, J. Vac. Sci. Technol. B 14, 4129-4133 (1996).
    [11] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivason, J. Ekerdt, and C. G. Willson, “Step and flash imprint lithography : a new approach to high-resolution patterning”, Proceeding of the SPIE’s International Symposium on Microlithography:Emerging Lithography Technologies Ⅲ, Santa Clara, CA 3676, Part One, 379-389 (1999).
    [12] P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, M. Stewart, J. Ekerdt, S. V. Sreenivason, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces:template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography”, J. Vac. Sci. Technol. B 17(6), 2965-2969 (1999).
    [13] M. Colburn, A. Grot, M. Amistoso, B. J. Choi, T. Bailey, J. Ekerdt, S. V. Sreenivason, J. Hollenhorst, and C. G. Willson, “Step and flash imprint lithography for sub-100 nm patterning”, 2000 SPIE’s International Symposium Microlithography: Emerging Lithography Technologies Ⅲ. Feb. 28-Mar. 3, 2000 Santa Clara, CA.
    [14] T. Bailey, B. J. Choi, M. Colburn, A. Grot, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivason, and C. G. Willson, “Step and flash imprint lithography:template surface treatment and defect analysis”, J. Vac. Sci. Technol. B 18(6), 3572-3577 (2000).
    [15] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. J. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivason, J. Ekerdt, and C. G. Willson, “Step-and-flash Imprint Lithography:A New Approach to High Resolution Patterning”, Proc. of SPIE 3676, 379 (1999).
    [16] T. K. Whidden, D. K. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE”, Nanotechnology 7, 447-451 (1996).
    [17] D. W. Wang, S. G. Thomas, K. L. Wang, Y. Xia, and G. M. Whitesides, “Nanometer scale patterning and pattern transfer on amorphous Si, crystalline Si, and SiO2 surfaces using self-assembled monolayers”, Appl. Phys. Lett. 70(12), 1593-1595 (1997).
    [18] X. M. Zhao, Y. Xia, and G. M. Whitesides, “Soft lithography methods for nano-fabrication”, J. Mater. Chem. 7(7), 1069-1074 (1997).
    [19] Y. Xia, and G. M. Whitesides, “Soft lithography”, Angewandte Chemie International Edition 37(5), 550-575 (1998).
    [20] S. Y. Chou, C. Keimel, and J. Gu, “Ultrafast and direct imprint of nanostructures in Silicon” Nature 417, 835-837 (2002).
    [21] R. Fabian Pease, “Imprint offer Moore”, Nature 417, 802-803 (2002).
    [22] Changsoon Kim, Max Shtein, and Stephen R. Forrest, “Nanolithography based on patterned metal transfer and its application to organic electronic device”, Appl. Phys. Lett. 80, 4051-4053 (2002).
    [23] Changsoon Kim, Paul E. Burrows, Stephen R. Forrest, “Micropatterning of Organic Electronic Devices by Cold-Welding”, Science 288, 831-833 (2000).
    [24] Changsoon Kim, and Stephen R. Forrest, “Fabrication of Organic Light-Emitting Devices by Low-Pressure Cold Welding”, Adv. Mater. (Weinheim, Ger.) 15, 541-545 (2003)
    [25] Yifang Cao, Changsoon Kim, Stephen R. Forrest, and Wole Soboyejo, “Effects of dust particles on organic electronic devices fabricated by stamping”, J. Appl. Phys. 98, 033713 (2005).
    [26] Y. C. Lee, C.Y. Chiu, and F. B. Hsiao, “Laser Assisted Roller Imprinting”, The 2nd Annual IEEE International Conference on Nano/Micro Engineered and Molecular System, Jan. 2007, Bangkok, Thailand.
    [27] C. H. Chen, and Y. C. Lee, “Contact Printing for direct metallic pattern transfer based on pulsed infrared laser heating”, J. Micromech. Microeng. 17, 1252-1256 (2007).
    [28] C. H. Chen, Y. C. Lee, C. D. Chen, S. J. Lai, and S. J. Liaw, “Roller Imprinting Based on Focus Infrared Heating”, Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, Jan. 2008, Sanya, China.
    [29] 阮俊億, 雷射輔助式奈米壓印技術應用於微米和奈米結構製程之參數探討, 國立成功大學奈米科技暨微系統工程研究所碩士論文, 民國96年。
    [30] M. Beck, M. Graczyk, I. Maximov, E.L. Sarwe, T.G.I. Ling, M. Keilb, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography”, Microelectronic Engineering 61-62, 441-448 (2002).
    [31] Y .C. Lee, C. Y. Chiu, and S. H. Chang, “A New Micro/Nano-Lithography Based on Contact Transfer of Thin Film and Mask Embedded Lithography”, Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, Jan. 2008, Sanya, China.

    下載圖示 校內:2009-08-27公開
    校外:2009-08-27公開
    QR CODE