| 研究生: |
呂政儒 Lu, Cheng-Ru |
|---|---|
| 論文名稱: |
自發點火式過氧化氫混合火箭技術研究 Study of Hypergolic Hybrid Rocket Using Hydrogen Peroxide as Oxidizer |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 自發點火式混合火箭 、接觸點燃機制 、高濃度過氧化氫 、觸媒燃料藥柱 、溢流現象 |
| 外文關鍵詞: | Hypergolic mechanism, Hydrogen Peroxide, Catalytic added fuel grain |
| 相關次數: | 點閱:79 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
混合火箭系統因具備高安全性能與低成本優勢,近年來無論是各國研究單位乃至民間太空科技業者均紛紛投入相關研究領域,然而混合火箭發展至今受到推進性能限制,現階段多用於任務型態簡易之探空火箭實驗,為提升混合火箭實際投入複雜太空任務的可行性,本研究主力發展混合火箭自發點火關鍵技術,實現在不裝配外部點火系統即能夠自發點火的混合火箭發動機構想。
本研究將燃料添加物混摻黏著劑製成燃料藥柱,使高濃度過氧化氫與觸媒藥柱直接接觸,於接觸面上之異相化學反應伴隨釋熱發生,造成周圍燃料以及氧化劑汽化並點燃,發動機自發點火的關鍵機制在於觸媒反應面上之液滴汽化與觸媒分解,過氧化氫之自分解反應伴隨液滴汽化發生,未反應完全之氧化劑於燃料藥柱表面溢流將造成發動機無法成功點燃,由於自發點火式混合火箭至今為止並非發展主流,因此相關設計參考資料並不普遍,本研究藉實驗觀察氧化劑液滴與觸媒燃料之反應情形,初步篩選能夠點燃之燃料與添加物配方並製成燃料藥柱,更進一步整合氧化劑噴嘴組成發動機,完成自發點火混合式火箭之原型測試,並透過改變氧化劑噴助條件以及搭配可視化之發動機實驗觀察,探討氧化劑溢流現象對於點燃延遲之影響,本研究初步瞭解發動機之接觸點燃機制,實驗所蒐集到之退縮率資料亦能作為後續發展大型自發點火式混合火箭之參考。
With the inherent merits of high maneuverability, hypergolic rocket system is extensively utilized in difficult and complicate space missions, such as planetary landing and orbital injection. Hybrid rockets with hypergolic feature is capable of producing reliable rapid ignition and generating thrust without additional ignition device. Hypergolic mechanisms utilized in hybrid rockets also have enormous research potential which can develop into throttling and restartable propulsion system and fulfilling the functionality of hybrid rocket propulsion. In this research, hypergolic features are achieved by the use of high concentration hydrogen peroxide as oxidizer and catalyst-added fuel grains, a mixture of plastic binder and catalyst for the decomposition of hydrogen peroxide. It is found that as hydrogen peroxide droplets contact with catalytic propellant surface, the exothermic heterogeneous reaction is initiated on the interface and heats up fuel grain surface inducing motor ignition. By modifying the oxidizer operating conditions and fuel grain configurations, we have shown reliably successful ignitions of the motor within a short period of time (<0.5sec) in hot fire experiments, and based on the trend of pressure rise the hypergolic starting characteristics can be classified into three different kinds of ignition processes. From the experimental observation using the transparent motor, we infer that the motor starting characteristic is related to the interaction of hydrogen peroxide droplets and catalytic propellant surface inducing flooding and splattering phenomena when liquid oxidizers impact on propellant surface, that may lead to hard-start or smooth-start of the rocket motor.
[1]Zakirov, and Martin Sweeting, “Nitrous Oxide as A Rocket Propellant,” Acta Astronautica, Vol. 48, No. 5-12, Pp 353-362, 2001.
[2]Kuo, K.K., Chiaverini, M.J., Challenges of Hybrid Rocket Propulsion in The 21st Century, Fundamentals of Hybrid Rocket Combustion And Propulsion, 2007.
[3]Mark Vadim Opoulos, Pete, and Terry Abel. "Development and Testing of a Peroxide Hybrid Upper Stage Propulsion System." 37th Joint Propulsion Conference and Exhibit. 2001.
[4]Sutton, George P., and Oscar Biblarz., Hybrid Propellant Rocket, Rocket Propulsion Elements. John Wiley & Sons, 2016.
[5]李俊明, 施耿維, 劉軒誠, 邱慶龍, 賈澤民, 賴維祥, 李聰盛. (1999). 混合火箭之初步設計及研究. 中國航空太空學會學刊, 31(3), 235-240.
[6]Karabeyoglu, M., Brian Cantwell, and David Altman. "Development and Testing Of Paraffin-Based Hybrid Rocket Fuels." 37th Joint Propulsion Conference and Exhibit. 2001.
[7]Marxman, G., R. Muzzy, and C. Wooldridge. "Fundamentals of Hybrid Boundary Layer Combustion." Heterogeneous Combustion Conference. 1963.
[8]Austin, B., Heister, S., Dambach, E., Meyer, S., & Wernimont, E. (2010). Variable thrust, multiple start hybrid motor solutions for missile and space applications. In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 7121).
[9]Norazila Othman, Subramaniam Krishnan, Wan Khairuddin Bin Wan Ali and Mohammad Nazri Mohd Jaafar, 2011, “Design And Testing Of A 50n Hydrogen Peroxide Monopropellant Rocket Thruster,” Jurnal Mekanikal, December 2011, No 33, 70-81
[10]Niklas Wingborg, Martin Johansson, Lars Bodin, “Initial Development Of A Laboratory Rocket Thruster For AND-Based Liquid Monopropellants,” FOI-R—2123-SE, ISSN 1650-1942, Weapons And Protection, Technical Report, 2006.
[11]Dieter M. Zube, E.J. Wucherer, and Brian Reed, “Evaluation Of HAN-Based Propellant Blends,” AIAA 2003-4643, 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference And Exhibit 20-23 July 2003, Huntsville, Alabama.
[12]Robert S. Jankovsky, and Steven R. Oleson, “HAN-Based Monopropellant Propulsion System with Applications,” NASA Technical Memorandum 107407, 1997.
[13]Zhang, Y., Gao, H., Guo, Y., Joo, Y. H., & Shreeve, J. N. M. (2010). Hypergolic N, N‐Dimethylhydrazinium Ionic Liquids. Chemistry–A European Journal, 16(10), 3114-3120.
[14]李新田, 曾鵬, 田輝, & 蔡國飆. (2011). H2O2/HTPB 縮比固液火箭發動機藥柱燃速試驗研究. 固體火箭技術, 34(4), 457-461.
[15]杜新, 汪亮, 葛李虎, 張寶慶, & 張研. (2003). H2O2-PE 固液混合火箭發動機試驗研究. 固體火箭技術, 26(2), 61-64.
[16]Bettner, Michael, and Ronald W. Humble. Polyethylene and Hydrogen Peroxide Hybrid Testing At The United States Air Force Academy. Air Force Academy Colorado Springs Co, 1998.
[17]Boiron, A. J., Verberne, O., Faenza, M., & Haemmerli, B. (2015). Hybrid Rocket Motor Upscaling and Development Test Campaign at Nammo Raufoss. In 51st AIAA/SAE/ASEE Joint Propulsion Conference (p. 4044).
[18]Tsujikado, Nobuo, and Atsushi Ishihara. "Improved Ignition Devices For 90% Hydrogen Peroxide/Polyethylene Hybrid Rocket Engine." 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2007.
[19]Jung, Eun Sang, and Sejin Kwon. "Autoignitable and Restartable Hybrid Rockets Using Catalytic Decomposition of An Oxidizer." Journal of Propulsion and Power 30.2 (2014): 514-518.
[20]莫嘉傑,“預分解過氧化氫與HTPB/石蠟混合火箭之研發及測試”, 國立成功大學航空太空工程學系碩士論文, 2016
[21]Pugibet, M., and H. Moutet. "On The Use of Hydrogen Peroxide as Oxidizer in Hybrid Systems." (1970).
[22]Wernimont, Eric J., Scott E. Meyer, and Mark C. Ventura. "Hybrid Motor System with A Consumable Catalytic Bed A Composition Of The Catalytic Bed And A Method Of Using." U.S. Patent No. 5,727,368. 17 Mar. 1998.
[23]Heister, S. D., E. J. Wernimont, and J. Rusek. "High Test Peroxide Hybrid Rocket Research." Hydrogen Peroxide Propulsion Workshop, Surrey, England. 1998.
[24]Anderson, R., R. Brown, and R. EBELING. "Theory of Hypergolic Ignition of Solid Propellants." Heterogeneous Combustion Conference. 1963.
[25]Anderson, R. "Theory of Ignition and Ignition Propagation of Solid Propellants in A Flow Environment." Solid Propellant Rocket Conference.
[26]陳建安, “過氧化氫觸媒雙推進劑熱機引擎之研發”, 國立成功大學航空太空工程學系碩士論文, 2003
[27]Robert K. Palmer, John J. Rusek, Low Toxicity Reactive Hypergolic Fuels For Use With Hydrogen Peroxide, 2nd International Conference On Green Propellants For Space Propulsion, Cagliar, Sardinia, Italy (2004) 7-8 June (ESA SP-557)
[28]Osmon, R. V. "An Experimental Investigation of a Lithium Aluminum Hydride-Hydrogen Peroxide Hybrid Rocket." Aerospace Chemical Engineering 62.61 (1966): 92-102.
[29]Shark, Steven C. Metal Hydride and Pyrophoric Fuel Additives for Dicyclopentadiene Based Hybrid Propellants. Diss. Purdue University, 2014.
[30]Connaughton, J., & Wharton, W. (1966, January). An Experimental Study of Hypergolic Ignition and Restart in a unique hybrid Window Motor. In 3rd And 4th Aerospace Sciences Meeting (P. 69).
[31]Tian, Hui, Xintian Li, and Guobiao Cai. "Ignition Theory Investigation and Experimental Research on Hybrid Rocket Motor." Aerospace Science and Technology 42 (2015): 334-341.
校內:2022-02-14公開