簡易檢索 / 詳目顯示

研究生: 李品賢
Li, Pin-Hsien
論文名稱: 正方鎢青銅結構之化合物:K2EuxFe1-x+δNb5-0.6δO15的合成及其磁電特性
Synthesis of tetragonal-tungsten-bronze type compound:K2EuxFe1-x+δNb5-0.6δO15 and characterisation of their electrical and magnetic properties
指導教授: 齊孝定
Qi, Xiaoding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 87
中文關鍵詞: 固相燒結法正方鎢青銅結構
外文關鍵詞: TTB structure, solid state sintering
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   目前已知許多正方鎢青銅結構(Tetragonal Tungsten Bronze,TTB)的化合物為鐵電材料,其典型代表如Ba2NaNb5O15。本實驗希望在保有鐵電特性的結構下,加入稀土或是過渡金屬元素,可以改變磁特性。
      本實驗利用固相燒結法及溶膠凝膠法,期望能將合成K2EuxFe1-x+δNb5-0.6δO15的化合物,並藉由調整Eu和Fe在此化合物中的比例,觀察此化合物在結構及其他性質上面的變化。  
      實驗結果可以發現:利用固相燒結法,K2EuxFe1-x+δNb5-0.6δO15在950℃12小時可以生成TTB結構,但同時也包含些許雜相,尤以Fe2O3(Hematite,赤鐵礦)最為常見。為了去除Fe2O3,可以使用鹽酸去反覆洗滌粉體,可以發現HCl除了可以溶解並去除大部分的Fe2O3之外,不會產生新的化合物,也不會破壞TTB結構。由於Fe跟Eu離子大小的差異,使得可以填入TTB結構中的位置也不同;因此若是對照XRD圖形,改變Eu和Fe的比例,也會改變TTB結構的種類。從EDS可以發現:進入TTB結構Fe數量,並不如預期的多,這應是雜相Fe2O3容易形成的原因之一。
      磁性方面:在未使用HCl清洗以前,從M-T曲線可以發現:在250K附近,會出現臺階狀的圖形。但經由HCl清洗去除部分雜相後,臺階狀的磁性特性便消失,幾可確認此一磁性現象是由Fe2O3的Morin transition而來,而非由TTB結構所提供。而K2EuxFe1-x+δNb5-0.6δO15成分下形成的TTB結構可能為亞鐵磁性。
      電性方面:雖然可以利用膠體懸浮法製成薄膜,但存在漏電流的問題。經固相燒結法及HCl清洗後,雖然仍可以看見漏電流的情形,但在較低的電壓下,可以出現極化的趨勢。

      There are many compounds of TTB structure shows ferroelecricity, such as Ba2NaNb5O15. Our approach here to change the magnetic property by adding rare earth or trasition metal element, and keep the TTB structure intact.
      The focus of research is to synthesize the compound,K2EuxFe1-x+δNb5-0.6δO15 and modulated the ratio between Eu and Fe by solid state sintering as well as sol-gel. Various characterization techniques were empolyed to find the structural changes and its fundamental properties.   
      The experimental results showed that TTB structure could be prepared at 950 oC in air for 12hr by solid state sintering, but had other compounds at the same time, like Fe2O3. In order to remove Fe2O3, we used hydrochloric acid to wash the powder repeatedly. We find that hydrochloric acid could selectively remove the iron oxide. Hydrochloric acid did not form any new compound, nor did it not destroy the TTB structure. When the Eu to Fe ratio changed, the types of TTB structure also changed as observed from XRD analysis. The number of Fe ion entered the TTB structure is not as good as Eu ion, and we could observer that from the EDS data.
      Before the removal of impure phases by hydrochloric acid, the M-T curive contained a step near to 250K. After using hydrochloric acid, the step got disappeared. Compared to every feasible impure phase, we thought the step from the Morin transition is because of Fe2O3. The TTB structure is ferrimagnetic when the nominal composition is K2Eu0.8Fe1.2Nb4.4O15.
      Here we also prepared the film by colloidal suspensions method, but observed a large leakage current. Hydrochloric acid was used to avoid impure phases in bulk. Although the problem about leakage current still occurred, but we could observe the trend of polarization by electric field.

    目錄 摘要.......................................................I Abstract.................................................III 誌謝.......................................................V 目錄.....................................................VII 表目錄.....................................................X 圖目錄....................................................XI 第一章 緒論................................................1 第二章 基礎理論............................................3 2-1磁性質簡介..............................................3 2-1-1磁性原理介紹..........................................3 2-1-2磁滯曲線(2)..........................................14 2-2鐵電性質與電滯曲線(3)..................................16 2-3複鐵性性質及材料.......................................19 2-4TTB結構................................................21 第三章 實驗方法與儀器介紹.................................26 3-1實驗材料...............................................26 3-1-1實驗藥品.............................................26 3-1-2實驗設備.............................................27 3-2分析儀器...............................................28 3-2-1X光粉末繞射儀(X-ray powder diffractometer,XRD)......28 3-2-2低掠角薄膜繞射儀(Glancing angle XRD,GIXRD)..........31 3-2-3場發射掃描式電子顯微鏡及能量分散光譜儀 (FE-SEM & EDS)......................................................33 3-2-4振動樣品磁化儀(Vibrating Sample Magnetometer,VSM)...34 3-2-5調幅式示差掃瞄熱分析儀(Modulated differential scanning calorimeter,MDSC)........................................35 3-3實驗流程...............................................36 3-4sol-gel溶液的調配......................................42 3-5基板清洗流程...........................................43 3-6旋鍍薄膜...............................................44 第四章 實驗結果與討論.....................................45 4-1相結構分析.............................................45 4-2成分分析...............................................63 4-3磁性分析...............................................69 4-4電性分析...............................................80 第五章 結論...............................................84 考文獻..................................................86 表目錄 表3-1 固相燒結法藥品表....................................26 表3-2 配製溶膠-凝膠藥品表.................................26 表4-1 K2EuXFe2-XNb4.4O15不同成分時,經固相燒結法(燒結溫度約950℃)而容易形成的TTB結構種類以及可能會出現的其它化合物。.55 表4-2 經HCl清洗前後,K2EuFeNb4.4O15使用EDS分析各元素比例。可以看見Fe的比例明顯減少。..................................68 表4-3 經HCl清洗後,K2EuFeNb4.4O15 和K2Eu0.8Fe1.2Nb4.4O15使用EDS分析各元素比例。.......................................68 圖目錄 圖2-1 反磁性磁矩排列.......................................4 圖2-2 反磁性之1/χ與溫度關係...............................5 圖2-3 順磁性磁矩排列.......................................6 圖2-4 順磁性之1/χ與溫度關係...............................6 圖2-5 鐵磁性磁矩排列.......................................7 圖2-6 鐵磁性之1/χ與溫度關係...............................8 圖2-7 亞鐵磁性磁矩排列.....................................9 圖2-8 亞鐵磁性之1/χ與溫度關係.............................9 圖2-9 反鐵磁性磁矩排列....................................10 圖2-10 反鐵磁性之1/χ與溫度關係...........................11 圖2-11 不同磁性質,其磁化率對於溫度的變化.................11 圖2-12 理想磁滯曲線(2)....................................15 圖2-13 鈣鈦礦結構.........................................16 圖2-14 理想鐵電材料電滯曲線(3)............................18 圖2-15 MO6的三維結構圖....................................21 圖2-16 TTB結構沿著001方向的投影圖(9)..................22 圖2-17 不同離子的離子半徑大小(單位:)....................24 圖3-1 X光粉末繞射裝置示意圖(10)...........................30 圖3-2 X光薄膜繞射裝置示意圖...............................32 圖3-4 固相燒結法流程圖....................................38 圖3-5 溶膠凝膠法鍍膜流程圖................................40 圖4-1 K2EuFeNb4.4O15(sample1)的XRD圖。....................48 圖4-2 K2EuFeNb4.4O15(sample2)的XRD圖。....................48 圖4-3 K2Eu2Nb4.4O15的XRD圖。..............................51 圖4-4 K2Eu1.2Fe0.8Nb4.4O15的XRD圖。.......................52 圖4-5 K2Eu0.8Fe1.2Nb4.4O15的XRD圖。.......................52 圖4-6 K2Eu0.4Fe1.6Nb4.4O15的XRD圖。.......................53 圖4-7 K2Fe2Nb4.4O15的XRD圖。..............................53 圖4-8 K2Eu0.4Fe1.6Nb4.4O15使用HCl前後的XRD圖。............57 圖4-9 K2Eu0.8Fe1.2Nb4.4O15使用HCl前後的XRD圖。............58 圖4-10 K2EuFeNb4.4O15使用HCl前後的XRD圖。.................58 圖4-11 Θ-2Θ scan,鍍於Pt基板,在空氣下700℃退火2小時。..60 圖4-12 Θ-2Θ scan,鍍於Si基板,在空氣下550℃退火2小時。..61 圖4-13 K2EuFeNb4.4O15旋鍍於Pt基板上,700℃4小時。.........62 圖4-14 K2EuFeNb4.4O15的EDS成分比例。......................65 圖4-15 HCl清洗後,K2EuFeNb4.4O15的EDS成分比例。...........66 圖4-16 HCl清洗後,K2Eu0.8Fe1.2Nb4.4O15的EDS成分比例。.....67 圖4-17 10000Oe下,K2EuFeNb4.4O15的M-T曲線。...............70 圖4-18 100Oe下,K2EuFeNb4.4O15的M-T曲線。.................70 圖4-19 K2EuFeNb4.4O15不同磁場下的M-T曲線。................71 圖4-20 10000Oe下,K2EuFeNb4.4O15(sample1、3)單位重量的磁化強度對溫度變化。............................................72 圖4-21 100Oe下,K2EuFeNb4.4O15(sample1、2、3)單位重量的磁化強度對溫度變化。..........................................73 圖4-22 10K時,K2EuFeNb4.4O15的M-H曲線,磁場範圍為±20000Oe。.................................................74 圖4-23 200K時,K2EuFeNb4.4O15的M-H曲線,磁場範圍為±20000Oe。.................................................74 圖4-24 300K時,K2EuFeNb4.4O15的M-H曲線,磁場範圍為±20000Oe。.................................................75 圖4-25 K2EuFeNb4.4O15的DSC曲線。..........................76 圖4-26 HCl清洗後,100Oe下,K2EuFeNb4.4O15單位重量的磁化強度對溫度變化。..............................................78 圖4-27 HCl清洗後,外加磁場100Oe下,K2Eu0.8Fe1.2Nb4.4O15單位重量的磁化率倒數對溫度變化。..............................79 圖4-28 1000Oe下,實線為提拉赤鐵礦陶瓷棒,虛線為赤鐵礦陶瓷(13)。....................................................79 圖4-29 試片一,電壓-頻率分別為1000V-10Hz、1000V-100Hz、1000V-1000Hz、300V-2000Hz。...............................82 圖4-30 試片一,電壓-頻率分別為1000V-1000Hz、300V-2000Hz。.82 圖4-31 試片二,電壓-頻率分別為300V-1000Hz、500V-1000Hz、700V-1000Hz、1000V-1000Hz。...............................83 圖4-32 試片三,電壓-頻率分別為500V-1000Hz、1000V-1000Hz。.83

    1. 劉國雄,“工程材料科學”全華科技, Ch8, 1996
    2. 邱碧秀,“電子陶瓷材料”徐氏基金會, Ch3, 1988
    3. J. Wang,“Deposition and Characterization of Multiferroic BiFeO3 Thin Films”PhD dissertation, University of Maryland, Department of Materials Science and Engineering, 2005
    4. M. E. Lines and A. M. Glass,“ Principles and applications of ferroelectrics and related materials”Oxford University, New York, 2001
    5. 鐘金峰,“化學液相法製備BiFeO3氧化物薄膜”清華大學材料科學與工程學系, 2006
    6. G.Srinivasan, E. T. Rasmussen, B. J. Levin and R. Hayes,“
    Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides”Phys. Rev. B65, 134402, 2002
    7. M. Josse, O. Bidault, F. Roulland, E. Castel, A. Simon, D. Michau, R. Von der Mhll, O. Nguyen and M. Maglione,“The Ba2LnFeNb4O15 Tetragonal Tungsten Bronze : towards RT composite multiferroics”
    Solid State Sciences, Volume 11, Issue 6, Pages 1118-1123, June 2009
    8. P. B. Jamieson, S. S. Abrahams and J. L. Bernstein,“Ferroelectric Tungsten Bronze-Type Crystal Structure. I. Barium Strontium Niobate Ba0.27Sr0.75Nb2O5.78”J. Chem. Phys. 48, 5048, 1968
    9. Annie Simon and Jean Ravez,“Solid-state chemistry and non-linear properties of tetragonal tungsten bronzes materials”C. R. Chimie 9, Pages 1268-1276, 2006
    10. 鄭信民、林麗娟,“X光繞射應用簡介”工業材料雜誌181期, Pages 100-108, 2002
    11. 林麗娟,“X光繞射原理及其應用”工業材料雜誌86期, Pages 100-109, 1994
    12. 翁敏航、楊茹媛、何詠碩、蘇炎坤,“Zr0.8Sn0.2TiO4 高介電奈米粉末與薄膜之製備與微波特性”奈米通訊第12卷第3期, Pages 50-56, 2005
    13. 胡朝彰,“雷射加熱提拉法生長釔鐵柘榴石晶纖之研究”中央大學機械工程研究所, 2003

    下載圖示 校內:立即公開
    校外:2009-07-08公開
    QR CODE