簡易檢索 / 詳目顯示

研究生: 鄭守恩
Cheng, Soul-En
論文名稱: 氣態氘化鈉分子C1Σ+能態高能位光譜探討
Spectroscopic Study of the C1Σ+ Higher Vibrational Levels in Gaseous Sodium Deuteride Molecules
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 109
中文關鍵詞: 氘化鈉解離極限C1Σ+能態雷射誘導螢光雙光子共振螢光
外文關鍵詞: Sodium deuteride, Dissociation limit, C1Σ+ state, Laser-induced fluorescence, Optical-optical double resonance fluorescence
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本次研究中,使用Nd:YAG雷射系統搭配著兩台可調控波長的染料雷射,利用雙光子共振螢光減量法進行氣態氘化鈉C1Σ+能態高振動能級部分的探討,利用pumping laser使產生X1Σ+→A1Σ+躍遷的自發螢光,再藉著probing laser提供能量使氘化鈉躍遷到C1Σ+能態而產生螢光減弱訊號來探討分子的高振動能級的振轉能量。
    比較氘化鈉低振動能級實驗值和文獻的同位素位移的振動能階差ΔGv+1/2後,決定最低觀測到的振動能級為v=10。在氘化鈉的高振動能級的部分,由於處在C1Σ+能態分子位能曲線雙位能阱的區域,使振動能階差(ΔGv+1/2),轉動常數(Bv)等光譜常數偏離原本預測值呈現不規則跳動。在外推氘化鈉最高可觀測振轉能級部分,觀測到C1Σ+振轉能級(58, 6),絕對能量為41609.8 cm-1,推測振動能級v=58為氘化鈉C1Σ+能態可觀測的最高振動能級並且為解離極限所在。
    本次實驗中總共觀測到112個氘化鈉C1Σ+能態振轉能級,其中包括10個振動能級(v=38, 50-58),8個轉動能級(J=3-10)。並且利用規則區的訊號擬合出一組登亥姆係數和RKR位能曲線其適用範圍為振動能級v=10-49。

    Using pulsed optical-optical double resonance fluorescence depletion spectroscopy we first observed the C1Σ+ state of gaseous sodium deuteride molecules. A blue laser beam was employed to be the pump to excite molecules from the X1Σ+ state to the A1Σ+ state. And then, a second laser from the region of infrared to the yellow dye laser beam was applied to be the probe to investigate the rovibrational levels of the C1Σ+ state by monitoring the fluorescence depletion simultaneously.

    The potential of the C1Σ+ state was calculated to be a double-well potential, moreover, the double- well of the sodium deuteride C1Σ+ was achieved for the first time in this work. The vibrational constant (Gv) and the rotational constant (Bv) for each rovibrational level were fitted individually, then, RKR potential curve was constructed in regular region.

    To determine the absolute vibrational number by comparing the theoretical calculations and utilizing the isotope-shift theory. In this work, the near-dissociation rovibrational level was observed , total of 112 rovibrational energy levels of the NaD C1Σ+ state was observed in the energy range 39800 to 41650 cm-1 where included vibrational quantum numbers 38 and 50 to 58. The roational quantum levels in the range of 3 to 10 were assigned by the selection rules.

    中文摘要....................................................I Extended Abstract.........................................II 誌謝.....................................................VII 表目錄...................................................XIII 圖目錄.....................................................XV 第一章 緒論.................................................1 1-1研究動機.................................................1 1-2文獻回顧.................................................5 第二章 量子與光譜理論.........................................9 2-1電磁波基本理論............................................9 2-2薛丁格方程式(Schrödinger equation).......................10 2-3波恩-奧本海默近似法(Born-Oppenheimer approximation).......11 2-4 分子常數...............................................13 2-5 分子光譜...............................................15 2-6 Rydberg-Klein-Rees (RKR)位能曲線.......................16 2-7 雙原子分子振轉動光譜能量推導...............................17 2-8 雙原子分子躍遷選擇率.....................................20 2-9 項符(Term symbol).....................................21 2-10法蘭克-康登原理(Franck-Condon principle)................22 2-11同位素位移法(Isotope shift).............................23 第三章 實驗................................................27 3-1實驗藥品................................................27 3-1-1 甲醇(Methanol)......................................27 3-1-2鈉金屬塊(Sodium rod)..................................27 3-1-3雷射染料(Laser dye)...................................28 3-1-4氘氣(Deuterium).....................................28 3-2實驗儀器介紹.............................................29 3-2-1雷射系統..............................................29 3-2-1-1石榴石雷射(Nd:YAG laser)............................29 3-2-1-2染料雷射(Dye laser).................................30 3-2-2熱管爐系統(Heat-pipe system)..........................32 3-2-3 校正系統.............................................34 3-2-3-1碘槽(Iodine cell)..................................34 3-2-3-2中空陰極管(Hollow cathode lamp, HCL)................35 3-2-4訊號偵測處理...........................................36 3-2-4-1光電倍增管(Photomultiplier tube)....................36 3-2-4-2單光儀(Monochromator)...............................37 3-2-4-3箱車訊號積分處理器(Boxcar integrator system)..........38 3-2-4-4數位示波器(Digital oscilloscope)....................38 3-2-4-5螢光放射光譜儀(Fluorescence spectrophotometer).......39 3-2-4-6電腦(Computer).....................................40 3-3 實驗介紹...............................................40 3-3-1實驗原理簡介...........................................40 3-3-2實驗方法..............................................42 第四章 結果與討論............................................49 4-1實驗條件最佳化...........................................49 4-1-1中間態選用............................................49 4-1-2合適的躍遷............................................49 4-1-3實驗變因與最佳化........................................53 4-1-3-1雷射出光品質與強度....................................53 4-1-3-2染料的狀態..........................................54 4-1-3-3驗證氣態氘化鈉躍遷存在.................................56 4-2訊號校正................................................58 4-2-1 Pumping laser 校正..................................58 4-2-2 Probing laser 校正..................................59 4-3實驗數據分析.............................................62 4-3-1實驗結果..............................................63 4-3-2氘化鈉分子C1Σ+能態數據處理...............................64 4-3-3 C1Σ+能態不規則區訊號確認...............................67 4-3-4氘化鈉Bv值的趨勢.......................................69 4-3-5氘化鈉ΔGv+1/2的趨勢....................................71 4-3-6鹼金族氘化物和氫化物的比較...............................73 4-3-7決定絕對振動量子數......................................79 4-3-8氘化鈉C1Σ+能態解離極限的判定.............................86 4-3-9氘化鈉分子常數與RKR分子位能曲線...........................89 4-3-10待完成實驗...........................................91 第五章 結論................................................93 參考文獻...................................................96 附錄A: 氘化鈉C1Σ+能態振轉能量...............................100 附錄B:經由分析ΔGv+1/2的差異決定NaD C1Σ+的振動量子數...........104 附錄C:實驗求得之C1Σ+能態與A1Σ+能態間的法蘭克-康登因子..........107

    1.W. Demtröder. Laser Spectroscopy; Springer-Verlag: Berlin, 1981.

    2.G. Herzberg. Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules; Robert E. Krieger Publishing Co.: Malabar,Florida, 1989.

    3.A. G. Gaydon. Dissociation Energies and Spectra of Diatomic Molecules; Chapman and Hall: London, 1968.

    4.F. B. Orth; W. C. Stwalley; S. C. Yang; Y. K. Hsieh. J. Mol. Spectrosc. 1980, 79, 314.

    5.K. V. L. N. Sastry; H. Eric; C. D. L. Frank. J. Chem. Phys. 1981, 75, 4753.

    6.A. G. Maki; W. B. Olson. J. Chem. Phys. 1989, 90, 6887.

    7.U. Magg; H. Jones. Chem. Phys. Lett. 1988, 146, 415.

    8.M. Giroud; O. Nedelec. J. Chem. Phys. 1980, 73, 4151.

    9.C. L. Yang; X. Zhang; K. L. Han. J. Mol. Structure. (Theochem) 2004, 676, 209.

    10.B. K. Taylor; P. R. Newman. J. Chem. Phys. 2003, 118, 8770.

    11.E. S. Sachs; J. Hinze; N. H. Sabelli. J. Chem. Phys. 1975, 62, 3377.

    12.E. S. Sachs; J. Hinze; N. H. Sabelli. J. Chem. Phys. 1975, 62, 3389.

    13.H. Y. Huang; T. L. Lu; T. J. Whang; Y. Y. Chang; C. C. Tsai. J. Chem. Phys. 2010, 133, 044301.

    14.H. Y. Huang. Laser Spectroscopy of the X A and C1Σ+ States in NaH molecule. Ph. D dissertation, National Cheng-Kung University, Taiwan, 2010.

    15.F. P. Pesl; S. Lutz; K. Bergmann. Eur. Phys. J. D 2000, 10, 247.

    16.H. S. Lee; Y. S. Lee; G. H. Jeung. Chem. Phys. Lett. 2000, 325, 46.

    17.H. Y. Huang; Y. Y. Chang; M. H. Liao; K. L. Wua; T. L. Lu; C. C. Tsai; T. J. Whang. Chem. Phys. Lett. 2010, 493, 53.

    18.R. E. Olson; B. Liu. J. Chem. Phys. 1980, 73, 2817.

    19.Y. Y. Chang. Optical-Optical Double Resonance of the NaH C1Σ+state. Master thesis, National Cheng-Kung University, Taiwan, 2000.

    20.M. H. Liao. Absolute Vibrational Numbering of the NaH C1Σ+ State. Master thesis National Cheng-Kung University, Taiwan, 2001.

    21.K. L. Wu. Spectroscopic Study of the NaH C1Σ+Higher and Lower Vibrational State Levels. Master thesis, National Cheng-Kung University, Taiwan, 2002.

    22.C. H. Yung. Optical-Optical Double Resonance Spectroscopy of the NaH D1Σ+ State. Master thesis, National Cheng-Kung University, Taiwan, 2003.

    23.J. M. Chiang. Spectroscopic Study of the NaH D1Σ+ Higher Vibrational State Levels. Master thesis, National Cheng-Kung University, Taiwan, 2004.

    24.Y. H. Hsiao. Spectroscopic Study of the NaH D1Σ+ State in the Dissociation Limit and Double-Well Potential. Master thesis, National Cheng-Kung University, Taiwan, 2006.

    25.C. C. Chu. The Excitation Spectroscopy of the NaD X-A Transitions and the Synthesis of ZnS Nanoparticles. Master thesis, National Cheng-Kung University, Taiwan, 2011.

    26.S. Ghosh; S. S. Bhattacharyya; S. Saha. Phys Rev A 2003, 67, 054701.

    27.R. E. Olson; M. Kimura. Phys Rev A 1985, 32, 3092.

    28.M. Aymar; J. Deiglmayr; O. Dulieu. Can. J. Phys. 2009, 87, 543.

    29.M. H. Lin. Study of the gas phase NaD C1Σ+state by OODR depletion spectroscopy. Master thesis, National Cheng-Kung University, Taiwan, 2013.

    30.S. Lochbrunner; M. Motzkus; G. Pichler; K. L. Kompa; P. Hering. Z. Phys. D 1996, 38, 35.

    31.Y. J. Li. Laser Spectroscopic Study of the NaD First Excited Singlet State and Parts of the Ground State. Master thesis, National Cheng-Kung University, Taiwan, 2012.

    32.D. A. McQuarrie. Quantum Chemistry; University Science Books and Oxford University Press: California, 1983.

    33.C. N. Banwell; E. M. McCash. Fundamentals of Molecular Spectroscopy; Tata McGraw-Hill: New Delhi, 1995.

    34.A. Akhmeteli. J. Math. Phys. 2011, 52, 082303.

    35.Z. G. Wang; H. R. Xia. Molecular and Laser Spectroscopy; Springer-Verlag: New York, 1991.

    36.J. E. Geusic; H. M. Marcos; L. G. Van Uitert. Appl. Phys. Lett. 1964, 4, 182.

    37.P. P. Sorokin; J. R. Lankard; E. C. Hammond; V. L. Moruzzi. IBM J. Res. Dev. 1967, 11, 130.

    38.A. S. King. J. Astrophys. 1908, 28, 300.

    39.C. R. Vidal. J. Appl. Phys. 1973, 44, 2225.

    40.J. T. Bahns. Laser Excitation Studies of Alkali Metal Vapors. Ph. D dissertation, Iowa, The Unuversity of Iowa, 1983.

    41.S. Gerstenkorn; P. Luc. Rev. Phys. Appl. 1979, 14, 791.

    42.H. Salami; A. J. Ross. J. Mol. Spectrosc. 2005, 233, 157.

    43.X. Zhu; A. H. Nur; P. Misra. J. Quant. Spectrosc. Radiat. Transfer 1994, 52, 167.

    44.M. Brieger; A. Hese; A. Renn; A. Sodeik. Chem. Phys. Lett. 1981, 78, 153.

    45.J. T. Bahns; W. C. Stwalley. Appl. Phys. Lett. 1984, 44, 826.

    46.S. K. Hsu; J. J. Wang; P. Yu; C. Y. Wu; W. T. Luh. J. Phys. Chem. A 2002, 106, 6279.

    47.J. J. Chen; W. T. Luh; G. H. Jeung. J. Chem. Phys. 1999, 110, 4402.

    48.C. C. Tsai; R. Y. Chang; H. W. Wu; T. J. Whang. J. Mol. Spectrosc. 2005, 232, 66.

    49.W. C. Martin; R. Zalubas. J. Phys. Chem. Ref. Data 1981, 10, 153.

    下載圖示 校內:2024-01-01公開
    校外:2024-01-01公開
    QR CODE