簡易檢索 / 詳目顯示

研究生: 張孝慈
Chang, Hsiao-Tzu
論文名稱: 利用光反應膠原蛋白作為牙髓修復材料之評估
Photoreactive collagen matrix as a reparative agent for dental pulp therapy
指導教授: 莊淑芬
Chuang, Shu-Fen
陳玉玲
Chen, Yuh-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 62
中文關鍵詞: 組織工程膠原蛋白交聯反應牙髓細胞核黃素孟加拉玫瑰紅分化礦化
外文關鍵詞: Tissue engineering, Collagen, Crosslinking, Dental pulp cells, Riboflavin, Rose bengal, Differentiation, Mineralization
相關次數: 點閱:90下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在組織工程中,膠原蛋白廣泛被用來當作支撐細胞生長所需的支架材料。然而最近的研究顯示,膠原蛋白基質能夠促進受損的牙髓組織的修復過程。未經處理過的膠原蛋白的穩定度,是由分子間微弱的氫鍵以及非共價鍵組成的,其鍵結導致材料具脆弱的機械性質且容易被酵素降解,因此會利用交聯劑使膠原蛋白交聯的方法去增加膠原蛋白的穩定度。戊二醛為一應用普遍的化學交聯劑,可對膠原蛋白進行化學修飾,形成穩固的交聯鍵結。另一方面,孟加拉玫瑰紅 (Rose bengal)以及核黃素 (Riboflavin),在隨著可見光或紫外光激發下的光反應交聯也逐漸被發展。因此本研究目的為,研究以經過光反應膠原蛋白作為牙髓修復材料的生物影響。
    研究第一部分檢測不同光反應之材料經過光照射後交聯的程度。將不同濃度的光反應和化學膠聯劑和膠原蛋白混合,其中光反應交聯劑利用可見光和長波紫外光誘導交聯後,再利用聚丙烯胺膠體電泳及接觸角用以分析膠原蛋白交聯之效果。結果顯示無論是經過化學或光反應的刺激下,皆能成功的使膠原蛋白交聯。
    第二部分為研究不同交聯劑和不同光源的照射對牙髓細胞的影響,以及交聯後的膠原蛋白對牙髓細胞生物相容性的影響。由結果可發現,雖然不同的膠聯劑在不同天數對細胞產生毒性,但是皆在第七天後對細胞不會影響細胞的生長能力;並且在可見光或光強度較低的長波紫外光照射下,對牙髓細胞皆不會造成嚴重死亡。另外,利用交聯膠原蛋白做為基底,以MTT檢驗交聯膠原蛋白對細胞貼附和毒性的影響。經過核黃素混合長波紫外光促進交聯的膠原蛋白,和控制組與其他組相比,較有好的細胞貼附能力。然而在細胞毒性方面,經過光反應的膠原蛋白皆不會因為時間的增加對細胞產生毒性,反之普遍應用的化學交聯劑戊二醛,卻會對細胞產生明顯的細胞毒性。
    最後選定0.01%的孟加拉玫瑰紅以及0.1%的核黃素,混合膠原蛋白後,分別利用可見光或紫外光促進其交聯,再進一步評估此交聯材料對於牙髓細胞分化及礦化的分析。在鹼性磷酸酶活性的測試結果得到,經過光促進交聯的膠原蛋白組別,鹼性磷酸酶活性是依時間的增加而增加,且活性都高於控制組,其中以0.01%的玫瑰紅促進交聯的組別最高。然而在礦化的分析結果發現,經由核黃素與膠原蛋白交聯的組別,有較多的礦物質小結形成,並且利用可見光促進交聯,與其他實驗組跟控制組比較,礦物質小結的生成最多。另外,以可見光與紫外光配合0.1%核黃素交聯的膠原纖維在7天後無明顯降解,且表現出較孟加拉玫瑰紅交聯組更低的金屬基質蛋白酶活性。
    由以上實驗可以得知,經光活化的膠原蛋白基質是有潛力之牙髓細胞修復的材料,其中以核黃素交聯處理具有低細胞毒性,高修復能力,與抗降解能力,渴望應用於牙髓修復組織工程。

    Collagen gels have been applied as a scaffold material for tissue engineering. Recent approaches have provided evidence about the use of collagen matrix promoting the reparative process of damaged dental pulp tissue. The untreated collagen is stabilized by the weak intermolecular hydrogen and noncovalent bonds, which are weak to resist the mechanical loading and easily degraded by enzyme. There have been chemical agents such as glutaraldehyde (GTA) to promote the cross-linking. Alternatively, the photo activated cross-linking by rose Bengal (RB) or riboflavin (RF) accompanying with visible light (VL) or ultraviolet (UVA) has been also developed. This study purpose was to examine the biological effects of photoreactive collagen matrix as a reparative material on dental pulp cell.
    The first parts were to examine the degrees of collagen crosslinking in different photoreactive materials and chemical reagent. RB and RF were mixed with collagen and subsequently irradiated by VL and UVA. The SDS-PAGE and contact angle were used to analyze the cross-linking of collagen. The all of results showed that whether the chemical or photoreactive cross-linked were able to promote the collagen cross-linking effectively.
    The next were not only to investigate the effect of cross-linking agents and light irradiation, but also to examine the cytocompatibility of cross-linked collagen on human dental pulp cells. The data demonstrated that all of the cross-linking agents did not have cell cytotoxicity to HDPCs after culture for 7 days. Additionally, neither the visible light nor ultraviolet irradiation caused cell death. We also examined the adhesion and cytotoxicity of cross-linked collagen. The RF/UVA treated collagen showed comparable cell adhesion with the control. The other side, collagen cross-linked by photochemical was not significant toxicity to HDPCs when after culture for 5 days. However, the widely cross-linker of GTA that were significant produced cytotoxicity
    Finally, we chosen 0.01% RB and 0.1% RF mixed collagen, and irradiated with either VL or UVA for following differentiation and mineralization tests. The cells plated on photo-crosslinked collagen matrix exhibited high ALP activity. The highest expressed ALP activity was found in 0.01% RB group. On the mineralization assay, there appeared calcium nodules when using riboflavin to promote collagen cross-linking. However, group of RF/VL exhibited more calcium nodules after culture for 21 days. 0.01% RB also presented mionor collagen degradation after 7-day cell culture, which was contributed to the inhibited MMP activity of RF.
    This study explores the potential of photoreactive collagen matrix as a reparative agent on dental pulp cells. Among the crosslinkers, RF shows low cytotoxicity, high mineralization ability, and anti-degradation ability. Therefore, the application of photo reactive collagen cross linking with RF may benefit the dental pulp regeneration.

    中文摘要 I Abstract III Acknowledgement V Contents VII Table contents X Figure contents XI Abbrebiation XIII Chapter 1. Introduction 1 1.1 Dental pulp 1 1.2 Endodontic treatment and pulp capping 1 1.3 Regenerative treatment for dental pulp tissue 3 1.3.1 Scaffold used in pulp regeneration 4 1.3.2 Dental pulp cells (DPCs) 5 1.3.3 Signal molecules for pulp regeneration 6 1.4 Collagen cross-linking 7 1.4.1 Chemical crosslinked collagen 8 1.4.2 Photochemical cross-linked collagen 8 1.5 Motivation and specific aims 9 Chapter 2. Materials and Methods 11 2-1 Preparation of collagen gel 11 2-2 Cross-linking treatment 11 2-3. SDS-PAGE electrophoresis 13 2-4. Surface tension 14 2-5. Primary culture of human dental pulp cells 14 2-6. WST-1 assay 14 2-7. MTT assay 15 2-8. Cell morphology 16 2-9. RNA Isolation 16 2-10. Reverse-transcription Polymerase Chain Reaction ( RT-PCR) 16 2-11. Quantitative Real-time PCR (qRT-PCR) analysis 17 2-12. ALP Activity 18 2-13. Alizarin red S stating 18 2-14. Gelatin zymography analysis 19 2-15. Statistical Analysis 20 Chapter 3. Results 21 3-1 Evaluation of cross-linking systems 21 3-2 The influence of cross-linker and light irradiation of HDPCs 22 3-3 Cell adhesion and proliferation on cross-linked collagen 23 3-4 Effects of cross-linked collagen on differentiation of HDPCs 24 3-5 Effects of cross-linked collagen on ALP activity 25 3-6 ECM mineralization of HDPCs on each scaffold 26 3-7 In vitro biodegradability of scaffold 27 Chapter 4. Discussion 28 Chapter 5. Conclusion 33 References 34 Figures 38 Appendix 59 Appendix 1. Reagents 59 Appendix 2. Equipments 61 Curriculum Vitae 62

    1. Bergenholtz G H-BP, Reit C. Textbook of Endodontology. Blackwell Pub, Oxford, UK. 2009.
    2. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21(9):1025-32.
    3. Zhang W, Yelick PC. Vital pulp therapy-current progress of dental pulp regeneration and revascularization. Int J Dent. 2010;2010:856087.
    4. Huang GT. Pulp and dentin tissue engineering and regeneration: current progress. Regen Med. 2009;4(5):697-707.
    5. Huang GT. Dental Pulp and Dentin Tissue Engineering and Regeneration:Advancement and Challenge. Front Biosci. 2012;3:788-800.
    6. Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod. 2005;31(10):711-18.
    7. West J. Endodontic update 2006. J Esthet Restor Dent. 2006;18(5):280-300.
    8. Hargreaves KM, Diogenes A, Teixeira FB. Treatment options: biological basis of regenerative endodontic procedures. J Endod. 2013;39(3S):S30-43.
    9. Hilton TJ. Keys to Clinical Success with Pulp Capping. Oper Dent. 2009;34(5):615-625.
    10. Mustafa M, Saujanya KP, Jain D, Sajjanshetty S, Arun A, Uppin L, KadriM. Role of Calcium Hydroxide in Endodontics: A Review. GJMEDPH. 2012;1(1):66-70
    11. Foreman PC, Barnes IE. Review of calcium hydroxide. Int Endod J. 1990;23(6):283-97.
    12. Farhad A, Mohammadi Z. Calcium hydroxide: a review. Int Dent J. 2005;55(5):293-301.
    13. Nowicka A, Lipski M, Parafiniuk M, Sporniak-Tutak K, Lichota D, Kosierkiewicz A, Kaczmarek W, Buczkowska-Radlinska J. Response of human dental pulp capped with biodentine and mineral trioxide aggregate. J Endod. 2013;39(6):743-7.
    14. Zarrabi MH, Javidi M, Jafarian AH, Joushan B. Histologic assessment of human pulp response to capping with mineral trioxide aggregate and a novel endodontic cement. J Endod. 2010;36:1778-81.
    15. Islam I, Chng HK, Yap AU. Comparison of the physical and mechanical properties of MTA and Portland cement. J Endod. 2006;32(3):193-197.
    16. Aeinehchi M, Eslami B, Ghanbariha M, Saffar AS. Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-capping agents in human teeth: A preliminary report. Int Endod J. 2003;36(3):225-31.
    17. Fridland M, Rosado R. Mineral Trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod. 2003;29(12):814-817.
    18. Fridland M, Rosado R. MTA solubility: A long-term study. J Endod. 2005;31(5):376-379.
    19. Demarco FF, Conde MC, Cavalcanti BN, Casagrande L, Sakai VT, Nör JE. Dental Pulp Tissue Engineering. Braz Dent J. 2011;22(1):3-13.
    20. Nakashima M, Akamine A. The Application of Tissue Engineering to Regeneration of Pulp and Dentin in Endodontics. J Endod. 2005;31(10):711-18.
    21. Galler KM, D'Souza RN, Hartgerink JD, Schmalz G. Scaffolds for dental pulp tissue engineering. Adv Dent Res. 2011;23(3):333-9.
    22. Mooney DJ, Powell C, Piana J, Rutherford B. Engineering dental pulp-like tissue in vitro. Biotechnol Prog. 1996;12(6):865-68.
    23. Bohl KS, Shon J, Rutherford B, Mooney DJ. Role of synthetic extracellular matrix in development of engineered dental pulp. J Biomater Sci Polym Ed. 1998;9(7):749-64.
    24. Kim NR, Lee DH, Chung PH, Yang HC. Distinct differentiation properties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(5):e94-100.
    25. Srisuwan T, Tilkorn DJ, Al-Benna S, Abberton K, Messer HH, Thompson EW. Revascularization and tissue regeneration of an empty root canal space is enhanced by a direct bliid supply and stem cells. Dent Traumatol. 2013;29:84-91.
    26. Bae WJ MK, Kim JJ, Kim JJ, Kim HW, Kim EC. Odontogenic responses of human dental pulp cells to collagen_nanobioactive glass nanocomposites. Dent Mater. 2012;28(12):1271-79.
    27. Smith JG, Smith AJ, Shelton RM, Cooper PR. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components. Exp Cell Res. 2012;318(18):2397-406.
    28. Butler WT, Ritchie H. The nature and functional significance of dentin extracellular matrix proteins. Int J Dev Biol. 1995;39(1):169-79.
    29. Magne D, Bluteau G, Lopez-Cazaux S, Weiss P, Pilet P, Ritchie HH, Daculsi G, Guicheux J. Development of an odontoblast in vitro model to study dentin mineralization. Connect Tissue Res. 2004;45(2):101-08.
    30. Min KS, Lee YM, Hong SO, Kim EC. Simvastatin promotes odontoblastic differentiation and expression of angiogenic factors via heme oxygenase-1 in primary cultured human dental pulp cells. J Endod. 2010;36(3):447-52.
    31. Viereck V, Siggelkow H, Tauber S, Raddatz D, Schutze N, Hüfner M. Differential regulation of cfba1/Runx2 and osteocalcin gene expression by vitamin D3, dexamethasone and local growth factors in primary human osteoblasts. J Cell Biochem. 2002;86(2):348-56.
    32. Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22(4):233-41.
    33. Nör JE. Tooth Regeneration in Operative Dentistry. Oper Dent. 2006;31(6):633-42.
    34. Decup F, Six N, Palmier B, Buch D, Lasfargues JJ, Salih E, Goldberg M. Bone sialoprotein-induced reparative dentinogenesis in the pulp of rat's molar. Clin Oral Investig. 2000;4(2):110-19.
    35. Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev. 1997;67(2):111-23.
    36. rinucci L, Lilli C, Guerra M, Belcastro S, Becchetti E, Stabellini G, Calvi EM, Locci P. Biocompatibility of collagen membranes crosslinked with glutaraldehyde or diphenylphosphoryl azide: An in vitro study. J Biomed Mater Res A. 2003;67(2):504-9.
    37. Ruijgrok JM, de Wijn JR, Boon ME. Glutaraldehyde crosslinking of collagen: effects of time, temperature, concentration and presoaking as measured by shrinkage temperature. Clin Mater. 1994;17(1):23-7.
    38. Tseng HJ, Tsou TL, Wang HJ, Hsu SH. Characterization of chitosan-gelatin scaffolds for dermal tissue engineering. J Tissue Eng Regen Med. 2013;7(1):20-31.
    39. Southern LJ, Hughes H, Lawford PV, Clench MR, Manning NJ. Glutaraldehyde‐induced cross‐links: a study of model compounds and commercial bioprosthetic valves. J Heart Valve Dis. 2000;9:241-48.
    40. Cheung DT, Tong D, Perelman N, Ertl D, Nimni ME. Mechanism of crosslinking of proteins by glutaraldehyde. IV: In vitro and in vivo stability of a crosslinked collagen matrix. Connect Tissue Res. 1990;25:27-34.
    41. Insińska-Rak M, Sikorska E, Herance JR, Bourdelande JL, Khmelinskii IV, Kubicki M, Prukała W, Machado IF, Komasa A, Ferreira LF, Sikorski M. Spectroscopy and photophysics of flavin related compounds: Riboflavin and iso-(6,7)-riboflavin. Photochem Photobiol Sci. 2005 Jun;4(6):463-8.
    42. Wollensak G, Redl B. Gel electrophoretic analysis of corneal collagen after photodynamic cross-linking treatment. Cornea. 2008;27(3):353-56.
    43. Cova A, Breschi L, Nato F, Ruggeri A Jr, Carrilho M, Tjäderhane L, Prati C, Di Lenarda R, Tay FR, Pashley DH, Mazzoni A. Effect of UVA-activated riboflavin on dentin bonding. J Dent Res. 2011;90(12):1439-45.
    44. Fawzy AS, Nitisusanta LI, Iqbal K, Daood U, Neo J. Riboflavin as a dentin crosslinking agent: ultraviolet A versus blue light. Dent Mater 2012;28(12):1284-91.
    45. Fawzy A, Nitisusanta L, Iqbal K, Daood U, Beng LT, Neo J. Characterization of riboflavin-modified dentin collagen matrix. J Dent Res. 2012;91(11):1049-54.
    46. Chiang YS, Chen YL, Chuang SF, Wu CM, Wei PJ, Han CF, Lin JC, Chang HT. Riboflavin-ultraviolet-A-induced collagen cross-linking treatments in improving dentin bonding. Dent Mater. 2013;29(6):682-92.
    47. Ibusuki S, Halbesma GJ, Randolph MA, Redmond RW, Kochevar IE, Gill TJ. Photochemically cross-linked collagen gels as three-dimensional scaffolds for tissue engineering. Tissue Eng. 2007;13(8):1995-2001.
    48. Chan BP, Hui TY, Chan OC, So KF, Lu W, Cheung KM, Salomatina E, Yaroslavsky A. Photochemical cross-linking for collagen-based scaffolds: a study on optical properties, mechanical properties, stability, and hematocompatibility. Tissue Eng. 2007;13(1):73-85.
    49. Chan BP, Chan OC, So KF. Effects of photochemical crosslinking on the microstructure of collagen and a feasibility study on controlled protein release. Acta Biomater. 2008;4(6):1627-36.
    50. Shrestha A, Friedman S, Kishen A. Photodynamically crosslinked and chitosan-incorporated dentin collagen. J Dent Res. 2011;90(11):1346-51.
    51. Zhang Y, Conrad AH, Conrad GW. Effects of ultraviolet-A and riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking. J Biol Chem. 2011;286(15):13011-22.

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE