簡易檢索 / 詳目顯示

研究生: 張琦
Chang, Chi
論文名稱: 基板與熱處理對奈米鑽石薄膜性質的影響
Effects of substrate type and heat treatment on characteristics of diamond films
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 117
中文關鍵詞: 奈米鑽石熱處理
外文關鍵詞: Nano-crystalline, heat treatment
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以微波電漿輔助化學氣相沉積成長奈米鑽石薄膜,實驗中先討論鑽石鍍膜前,前處理的方式與差異;隨後分別比較鑽石薄膜沉積在各種基板上的差異,並討論鑽石在大氣中施以熱處理後鑽石薄膜在表面形貌、拉曼光譜、X 光光電子能譜與電性質上的改變。研究中發現,使用金屬鍍層鎢能夠有效的促進鑽石的成長,將成長速率由235 nm/hr提升至640 nm/hr,且與沉積與矽基板上的鑽石相比其結構並無明顯差異。
    之後將所沉積出來的鑽石薄膜在大氣環境中施以熱處理,藉由拉曼光譜、掃描式電子顯微鏡、X光繞射、AFM、X 光光電子能譜等儀器,對熱處理後的鑽石薄膜性質做分析;實驗中,使用了三種不同參數所沉積的鑽石來作為熱處裡的試片,此三種鑽石分別具有不同的晶粒尺寸,觀察其在熱處理後試片表面形貌的變化,進一步比較不同大小的鑽石顆粒對於抵抗氧化能力的差異;並且利用黃光微影製造一電性值的量測元件,量測熱處理後鑽石電性質的改變,發現電阻值與電容值回隨著熱處理而改變,且熱處理後鑽石的電阻值受到試片表面的SP2含量而電容值則與平均晶粒大小有關。

    Nano-crystalline diamonds were deposited by microwave plasma enhanced chemical vapor deposition on different substrates such as tungsten coated silicon, quartz, silicon. The different substrates exhibit various surface characteristics such that nano-crystalline diamonds having different growth rate and thickness uniformity were obtained. Selected diamonds were heat treated at different temperatures, ranging from 100 to 500 ℃ in ambient air for 1 hr. The heat treated diamonds were then subjected to not only property measurements but also material characteristics analyses. The capacitance a were determined before and after the heat treatments. In the mean time, atomic force microscopy, Raman spectroscopy, scanning electron microscopy, and X-ray Photoelectron Spectroscopy were used to characterize the as-deposited and heat-treated diamonds. Effects of heat treatments on the material characteristics are discussed. Correlation between the material characteristics and the electrical properties are also made.

    目錄 圖目錄 VI 表目錄 XII 第一章 緒論 1 1-1.前言 1 1-2.動機與目的 2 第二章 理論基礎與文獻回顧 3 2-1.鑽石成長原理介紹 3 2-1-1.前處理方法 3 2-1-2.不同機台化學氣相沉積法之差異 8 2-1-3.製程氣體與成長機制 12 2-1-3-1 氫氣所扮演的角色 12 2-1-3-2 氬氣所扮演的角色 14 2-1-3-3 甲烷所扮演的角色 15 2-2.奈米鑽石與超奈米鑽石 17 2-2-1.奈米鑽石的性質 19 2-2-2.超奈米鑽石的性質 20 2-3.金屬緩衝層對鑽石成長的影響 22 2-4.鑽石性質於熱處理後之變化 27 第三章 實驗方法與儀器設備 30 3-1.實驗流程 30 3-2.鑽石薄膜之製備 32 3-1-1.基板清洗與前處理 32 3-1-2.奈米鑽石薄膜之成長參數 34 3-1-3.性質量測元件的製作 35 3-1-4.真空濺鍍系統 38 3-1-5.微波電漿輔助化學法 38 3-1-6.反應性離子蝕刻 39 3-1-7.退火系統 40 3-2.特性分析 41 3-2-1.拉曼散射光譜儀 41 3-2-2. 表面形貌觀察 43 3-2-2-1. 掃描式電子顯微鏡 43 3-2-2-2. 原子力顯微鏡 43 3-2-3.X-RAY 繞射分析 45 3-2-4.X 光光電子能譜儀 46 3-2-5.穿透式電子顯微鏡 47 3-2-6.電性分析 47 3-2-6-1.四點探針 47 第四章.奈米鑽石成長結果與討論 49 4-1.試片前處理對成長鑽石的影響 49 4-2.不同參數沉積鑽石之成長結果 53 4-5.不同基板之鑽石成長結果 57 4-5-2.表面形貌與成長速率分析 57 4-5-3.結構分析 61 4-5-4.穿透式電子顯微鏡之觀察 62 第五章 在空氣環境下之熱穩定性比較 64 5-1.含氫及氬氣奈米鑽石 64 5-1-1.拉曼光譜分析 64 5-1-2.表面形貌的分析 71 5-1-3. X-RAY 繞射分析 75 5-1-4. X 光光電子能譜分析 77 5-2.不含氬奈米鑽石 80 5-2-1.拉曼光譜分析 80 5-2-2.表面形貌的分析 86 5-2-3. X-RAY 繞射分析 89 5-1-4. X 光光電子能譜分析 91 5-3.不含氫氣奈米鑽石 94 5-3-1. 拉曼光譜分析 94 5-3-2. 表面形貌的分析 100 5-3-3. X-RAY 繞射分析 103 5-3-4. X 光光電子能譜分析 104 5-4. 電性質的分析 107 第六章 結論與未來展望 112 第七章 參考文獻 113 圖目錄 圖2-1為刮痕在化學氣相沉積法成長鑽石之早期成核的示意圖[10] 5 圖2- 3 基板在氫電漿環境下(A)有偏壓處理(B)無偏壓處理[16] 7 圖2-4 為熱燈絲化學氣相沉機設備之示意圖 9 圖2- 5微波電漿化學氣相沉機設備之示意圖 10 圖2- 6化學氣相沉積過程中氣相與表面之可能反應[29] 15 圖2-7不同碳濃度與基板溫度對鑽石薄膜之晶粒大小的影響[31] 16 圖2-8 MCD與UNCD之生長橫節面示意圖(A)微米鑽石(MCD) (B)超奈米鑽石(UNCD)[33] 17 圖2- 9 C2鍵接鑽石表面位能之示意圖[12] 21 圖2- 10 基板之處理前後粗糙度差異(A)矽基板(B)以鑽石懸浮液處理過之矽基板(C)鍍鉬-矽基板(D) 以鑽石懸浮液處理過之鍍鉬-矽基板[43] 23 圖2- 11 鑽石成長於含有鈦鍍層與矽基板之比較(A)鍍鈦-矽基板(B)矽基板(C)以含鈦粉的鑽石懸浮液處理之矽基板[14] 24 圖2- 12 UNCD成長於鍍鎢基板上之TEM與縱深分析 25 圖2- 13隨著熱處理溫度與石墨相含量的提生鑽石薄膜性質之改變[4] 27 圖3- 1鑽石懸浮液之外觀 33 圖3-2 性質量測元件的製作流程圖 35 圖3-3性質量測元件之示意圖 37 圖3- 5 微波電漿化學氣相反應之機台示意圖 39 圖3- 6史托克與反史托克拉曼散射之能階示意圖 41 圖3- 7 D BAND與G BAND中碳分子的振動模式[53] 42 圖3- 8原子力顯微鏡示意圖 44 圖3- 9布拉格繞射示意圖 45 圖3- 10 X-RAY激發光電子游離之示意圖[55] 46 圖3- 11四點探針示意圖 48 圖4-1矽基板(A、B)與石英(C、D)以砂紙處理後成長一小時後的試片表面形貌 50 圖4- 2 以鑽石懸浮液處理過後所成長鑽石 (A)0.5ΜM(B)3~5NM表面形貌(C)0.5ΜM(D)3~5NM橫截面圖(E)0.5ΜM(F)3~5NM拉曼光譜 52 圖4-3 以富氫參數所沉積出之鑽石薄膜 54 圖4- 4以氫及氬氣參數所沉積出之鑽石薄膜 55 圖4-5以富氬參數沉積4小時後之鑽石薄膜 56 圖4- 6氫氣-氬氣-甲烷參數沉積鑽石於(A)矽與(B)石英基板上30分鐘之情形 57 圖4-7 以氫氣-甲烷參數將鑽石膜沉積在鍍鎢矽基板上60分鐘之情形 58 圖4- 8氫氣-氬氣-甲烷參數將鑽石膜分別沉積在(A)鍍鎢、(B)鍍鈦矽基板、(C)石英與(D)矽基板60分鐘後之表面形貌 59 圖4- 9氫氣-氬氣-甲烷參數將鑽石膜分別沉積在(A)鍍鎢、(B)鍍鈦矽基板、(C)石英與(D)矽基板60分鐘後之橫截面形貌 60 圖4- 10以氫氣-氬氣-甲烷參數將鑽石膜沉積在不同基板上之拉曼光譜(532NM) 61 圖4- 11 鑽石沉積在鍍鎢基板上(A)膜與基板之交界處(B)為膜中之情形 62 圖4- 12 鑽石沉積在石英基板上(A)膜與基板之交界處(B)為膜中之情形 63 圖5- 1 不同熱處理溫度後所得到之拉曼光譜(633NM) 65 圖5- 2 不同熱處理溫度擬合處理後所得到之拉曼光譜(633NM) 66 圖5- 3含氫及氬氣奈米鑽石於熱處理後的峰值強度趨勢 67 圖5- 4 不同熱處理溫度後所得到之拉曼光譜(532NM) 68 圖5- 5不同熱處理溫度擬合、標準化處理後所得到之拉曼光譜(532NM) 69 圖5- 6 含氫及氬氣所沉積之奈米鑽石薄膜於不同溫度熱處理後之表面形貌(A)為剛沉積之薄膜(B)施以100℃(C)200℃(D)300℃(E)400℃(F)500℃熱處理 72 圖5- 7 以AFM觀察奈米鑽石薄膜施以(A)剛沉積之薄膜(B)100℃(C)200℃(D)300℃(E)400℃(F)500℃熱處理後之表面形貌熱處理與(G)所測得的平均粗糙度 74 圖5- 8 鑽石薄膜在不同溫度下熱處理所得之繞射圖譜(▼:氮化鎢WN之相,●:W6C2.54之相,★:鑽石之相。) 76 圖5- 9 試片分別在不同溫度施以熱處理後電子能譜圖 77 圖5- 10鑽石薄膜在不同溫度熱處理下C1S的表面鍵結形態 79 圖5- 11各溫度熱處理以氫氣-甲烷所沉積鑽石薄膜的拉曼圖譜(633NM) 81 圖5- 12 不同熱處理溫度後所得到之拉曼光譜(532NM) 82 圖5- 13不同熱處理溫度擬合、標準化處理後所得到之拉曼光譜(532NM) 84 圖5- 14 以氫及甲烷所沉積之鑽石薄膜於不同溫度熱處理後之表面形貌(A)為剛沉積之薄膜(B)施以100℃(C)200℃(D)300℃(E)400℃(F)500℃熱處理 87 圖5- 15 AFM觀察鑽石薄膜施以(A)剛沉積之薄膜(B)100℃(C)200℃(D)300℃(E)400℃(F)500℃熱處理後之表面形貌與(G)所測得的平均粗糙度 88 圖5- 16 以氫及甲烷沉積的鑽石薄膜在不同溫度下熱處理所得的繞射圖譜(▼為WN之相,●為W6C2.54之相,★表示鑽石之相) 90 圖5- 17 試片分別在不同溫度施以熱處理後電子能譜圖 91 圖5- 18 鑽石薄膜在不同溫度熱處理下C1S的表面鍵結形態 93 圖5- 19 不同熱處理溫度擬合處理後所得到之拉曼光譜(633NM) 95 圖5- 20 不同熱處理溫度後所得到之拉曼光譜(532NM) 96 圖5- 21 不同熱處理溫度擬合、標準化處理後所得到之拉曼光譜(532NM) 98 圖5- 22 氬及甲烷所沉積之鑽石薄膜於不同溫度熱處理後之表面形貌(A)為剛沉積之薄膜(B)施以100℃(C)200℃(D)300℃(E)400℃(F)500℃熱處理 101 圖5- 23 以AFM觀察鑽石薄膜施以(A)剛沉積之薄膜(B)100℃(C)200℃(D)300℃(E)400℃(F)500℃熱處理後之表面形貌熱處理與(G)所測得的平均粗糙度 102 圖5- 24以氬及甲烷沉積的鑽石薄膜在不同溫度下熱處理所得的繞射圖譜 103 圖5- 25 試片分別在不同溫度施以熱處理後電子能譜圖 104 圖5- 26 超奈米鑽石薄膜在不同溫度熱處理下C1S的表面鍵結形態 105 圖5- 27 氫-氬-甲烷所沉積之鑽石膜在熱處理後電阻值的變化 108 圖5- 28 氫-甲烷所沉積之鑽石膜在熱處理後電阻值的變化 109 圖5- 29 氬-甲烷所沉積之鑽石膜在熱處理後電阻值的變化 110 圖5- 30 熱處理溫度與相對介電常數曲線 111 圖5- 31 不同熱處理溫度下在頻率1MHZ下所量得之C-V曲線 111 表目錄 表2- 1不同基板前處理後的成核密度 4 表2- 2 不同前處理方式所造成的表面粗糙度[7] 6 表2- 3各種鑽石薄膜沉積法的比較[22] 11 表2- 4 奈米鑽石與超奈米鑽石之性質比較 18 表2- 5常做為金屬緩衝層之元素 22 表2- 6比較各基板成長差異之文獻 26 表2- 7 討論熱處理對鑽石性質影響之文獻 29 表3- 1 薄膜沉積參數表 34 表3- 2 旋轉塗佈法所使用的參數 36 表3- 3 鍍鎢矽基板之熱處理條件參數表 40 表5- 1 擬合處理後所得之各結構的含量比 70 表5- 2經擬合處理後膜中所各鍵結形態之含量 78 表5- 3 擬合處理後所得之各結構的含量比 85 表5- 4 經擬合處理後膜中所各鍵結形態之含量 92 表5- 5 擬合處理後所得之各結構的含量比 99 表5- 6經擬合處理後膜中所各鍵結形態之含量 106

    1. Buijnsters, J.G., L. Vazquez, and J.J. ter Meulen, Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth. Diamond and Related Materials, 2009. 18(10): p. 1239-1246.
    2. Angus, J.C., H.A. Will, and W.S. Stanko, Growth of Diamond Seed Crystals by Vapor Deposition. Journal of Applied Physics, 1968. 39(6): p. 2915-&.
    3. Joseph, P.T., et al., Transparent ultrananocrystalline diamond films on quartz substrate. Diamond and Related Materials, 2008. 17(4-5): p. 476-480.
    4. Khomich, A.V., et al., Effect of high temperature annealing on optical and thermal properties of CVD diamond. Diamond and Related Materials, 2001. 10(3-7): p. 546-551.
    5. Butler, J.E., et al., Understanding the chemical vapor deposition of diamond: recent progress. Journal of Physics-Condensed Matter, 2009. 21(36): p. -.
    6. Mitsuda, Y., et al., The Growth of Diamond in Microwave Plasma under Low-Pressure. Journal of Materials Science, 1987. 22(5): p. 1557-1562.
    7. Iijima, S., Y. Aikawa, and K. Baba, Early Formation of Chemical Vapor-Deposition Diamond Films. Applied Physics Letters, 1990. 57(25): p. 2646-2648.
    8. Williams, O.A., et al., Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chemical Physics Letters, 2007. 445(4-6): p. 255-258.
    9. Shenderova, O., S. Hens, and G. McGuire, Seeding slurries based on detonation nanodiamond in DMSO. Diamond and Related Materials, 2010. 19(2-3): p. 260-267.
    10. Liu, H.M. and D.S. Dandy, Studies on Nucleation Process in Diamond Cvd - an Overview of Recent Developments. Diamond and Related Materials, 1995. 4(10): p. 1173-1188.
    11. Dennig, P.A. and D.A. Stevenson, Influence of Substrate Topography on the Nucleation of Diamond Thin-Films. Applied Physics Letters, 1991. 59(13): p. 1562-1564.
    12. Gruen, D.M., Nanocrystalline diamond films. Annual Review of Materials Science, 1999. 29: p. 211-259.
    13. Xiao, X., et al., Low temperature growth of ultrananocrystalline diamond. Journal of Applied Physics, 2004. 96(4): p. 2232-2239.
    14. Chen, L.J., et al., Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond. Journal of Applied Physics, 2007. 101(6): p. -.
    15. Ternyak, O., R. Akhvlediani, and A. Hoffman, Study on diamond films with ultra high nucleation density deposited onto alumina, sapphire and quartz. Diamond and Related Materials, 2005. 14(3-7): p. 323-327.
    16. Zhong, X.Y., et al., Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping. Journal of Applied Physics, 2009. 105(3): p. -.
    17. Matsumoto, S., et al., Growth of Diamond Particles from Methane-Hydrogen Gas. Journal of Materials Science, 1982. 17(11): p. 3106-3112.
    18. Kanetkar, S.M., et al., Diamond Nucleation on Epitaxially Grown Y-Zro2 Layers on Si(100). Applied Physics Letters, 1993. 63(6): p. 740-742.
    19. Meyer, D.E., R.O. Dillon, and J.A. Woollam, Radio-Frequency Plasma Chemical Vapor-Deposition Growth of Diamond. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1989. 7(3): p. 2325-2327.
    20. Suzuki, K., et al., Growth of Diamond Thin-Films by Dc Plasma Chemical Vapor-Deposition. Applied Physics Letters, 1987. 50(12): p. 728-729.
    21. Lee, H.J., et al., Some novel aspects of nanocrystalline diamond nucleation and growth by direct current plasma assisted chemical vapor deposition. Diamond and Related Materials, 2010. 19(11): p. 1393-1400.
    22. Ramesham, R., et al., Selective and Low-Temperature Synthesis of Polycrystalline Diamond. Journal of Materials Research, 1991. 6(6): p. 1278-1286.
    23. Gurbuz, Y., et al., Diamond semiconductor technology for RF device applications. Solid-State Electronics, 2005. 49(7): p. 1055-1070.
    24. Michaelson, S. and A. Hoffman, Hydrogen in nano-diamond films. Diamond and Related Materials, 2005. 14(3-7): p. 470-475.
    25. McCauley, T.G., D.M. Gruen, and A.R. Krauss, Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma. Applied Physics Letters, 1998. 73(12): p. 1646-1648.
    26. <以CCl4在hfcvd城長奈米鑽石薄膜.pdf>.
    27. Liou, Y., et al., Low-Temperature Diamond Deposition by Microwave Plasma-Enhanced Chemical Vapor-Deposition. Applied Physics Letters, 1989. 55(7): p. 631-633.
    28. Tzeng, Y., C. Liu, and A. Hirata, Effects of oxygen and hydrogen on electron field emission from microwave plasma chemically vapor deposited microcrystalline diamond, nanocrystalline diamond, and glassy carbon coatings. Diamond and Related Materials, 2003. 12(3-7): p. 456-463.
    29. Spear, K.E., Chemical Vapor Deposition of Diamond and Ceramic Coatings. Materials Science Forum, 1994. 154.
    30. Influence of Substrate Treatments on Diamond Thin-Film Nucleation. Thin Solid Films, 1992. 212(1-2): p. 63-67.
    31. May, P.W. and Y.A. Mankelevich, From ultrananocrystalline diamond to single crystal diamond growth in hot filament and microwave plasma-enhanced CVD reactors: a unified model for growth rates and grain sizes. Journal of Physical Chemistry C, 2008. 112(32): p. 12432-12441.
    32. Li, D.S., et al., Effects of methane concentration on diamond spherical shell films prepared by DC-plasma jet CVD. Solid State Ionics, 2008. 179(21-26): p. 1263-1267.
    33. Williams, O.A., et al., Growth, electronic properties and applications of nanodiamond. Diamond and Related Materials, 2008. 17(7-10): p. 1080-1088.
    34. Zhou, D., et al., Control of diamond film microstructure by Ar additions to CH4/H-2 microwave plasmas. Journal of Applied Physics, 1998. 84(4): p. 1981-1989.
    35. Auciello, O. and A.V. Sumant, Status review of the science and technology of ultrananocrystalline diamond (UNCD (TM)) films and application to multifunctional devices. Diamond and Related Materials, 2010. 19(7-9): p. 699-718.
    36. Zapol, P., et al., Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries. Physical Review B, 2002. 65(4): p. -.
    37. Locher, R., et al., Nitrogen Stabilized (100) Texture in Chemical-Vapor-Deposited Diamond Films. Applied Physics Letters, 1994. 65(1): p. 34-36.
    38. Buijnsters, J.G., P. Shankar, and J.J. Ter Meulen, Direct deposition of polycrystalline diamond onto steel substrates. Surface & Coatings Technology, 2007. 201(22-23): p. 8955-8960.
    39. Xiao, X., et al., The failure mechanism of chromium as the interlayer to enhance the adhesion of nanocrystalline diamond coatings on cemented carbide. Diamond and Related Materials, 2009. 18(9): p. 1114-1117.
    40. Wolter, S.D., J.T. Glass, and B.R. Stoner, Bias Induced Diamond Nucleation Studies on Refractory-Metal Substrates. Journal of Applied Physics, 1995. 77(10): p. 5119-5124.
    41. Naguib, N.N., et al., Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers. Chemical Physics Letters, 2006. 430(4-6): p. 345-350.
    42. Houska, J., et al., Mass spectrometry of nanodiamonds. Rapid Communications in Mass Spectrometry, 2009. 23(8): p. 1125-1131.
    43. Buijnsters, J.G., et al., Enhancement of the nucleation of smooth and dense nanocrystalline diamond films by using molybdenum seed layers. Journal of Applied Physics, 2010. 108(10).
    44. Peng, X.L. and T.W. Clyne, Formation and adhesion of hot filament CVD diamond films on titanium substrates. Thin Solid Films, 1997. 293(1-2): p. 261-269.
    45. Liu, C., et al., Dielectric properties of hydrogen-incorporated chemical vapor deposited diamond thin films. Journal of Applied Physics, 2007. 102(7).
    46. Michaelson, S., et al., Bulk and surface thermal stability of ultra nanocrystalline diamond films with 10-30 nm grain size prepared by chemical vapor deposition. Journal of Applied Physics, 2010. 107(9): p. -.
    47. Gan, L., et al., The effect of grain boundaries and adsorbates on the electrical properties of hydrogenated ultra nano crystalline diamond. Diamond and Related Materials, 2009. 18(9): p. 1118-1122.
    48. Ye, H.T., R.B. Jackman, and P. Hing, Spectroscopic impedance study of nanocrystalline diamond films. Journal of Applied Physics, 2003. 94(12): p. 7878-7882.
    49. Jackman, R.B., et al., Nanocrystalline diamond as an electronic material: An impedance spectroscopic and Hall effect measurement study. Journal of Applied Physics, 2010. 107(3).
    50. Wang, S.F., J.C. Pu, and J.C. Sung, High-temperature oxidation behaviors of CVD diamond films. Applied Surface Science, 2009. 256(3): p. 668-673.
    51. Wang, S.F., J.C. Pu, and J.C. Sung, High-temperature oxidation behavior of nanocrystalline diamond films. Journal of Alloys and Compounds, 2010. 489(2): p. 638-644.
    52. Yeh, C.S., et al., Effect of rapid thermal annealing treatment on the field-emission characteristics of nanocrystalline diamonds grown on various metal/silicon substrates. Journal of Materials Science-Materials in Electronics, 2010. 21(4): p. 385-392.
    53. Robertson, J., Diamond-like amorphous carbon. Materials Science & Engineering R-Reports, 2002. 37(4-6): p. 129-281.
    54. Kuzmany, H., et al., The mystery of the 1140 cm(-1) Raman line in nanocrystalline diamond films. Carbon, 2004. 42(5-6): p. 911-917.
    55. Chu, P.K. and L.H. Li, Characterization of amorphous and nanocrystalline carbon films. Materials Chemistry and Physics, 2006. 96(2-3): p. 253-277.
    56. Angadi, M.A., et al., Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. Journal of Applied Physics, 2006. 99(11): p. -.
    57. Miyake, M., A. Ogino, and M. Nagatsu, Characteristics of nano-crystalline diamond films prepared in Ar/H-2/CH4 microwave plasma. Thin Solid Films, 2007. 515(9): p. 4258-4261.
    58. Lee, J.C., et al., Nucleation and bulk film growth kinetics of nanocrystalline diamond prepared by microwave plasma-enhanced chemical vapor deposition on silicon substrates. Applied Physics Letters, 1996. 69(12): p. 1716-1718.
    59. Ager, J.W., D.K. Veirs, and G.M. Rosenblatt, Spatially Resolved Raman Studies of Diamond Films Grown by Chemical Vapor-Deposition. Physical Review B, 1991. 43(8): p. 6491-6499.
    60. Wada, N. and S.A. Solin, Raman Efficiency Measurements of Graphite. Physica B & C, 1981. 105(1-3): p. 353-356.
    61. 探討奈米至微米尺度之鑽石氧化反應動力學機制.
    62. Fernandes, A.J.S., et al., Nano- and micro-crystalline diamond growth by MPCVD in extremely poor hydrogen uniform plasmas. Diamond and Related Materials, 2007. 16(4-7): p. 757-761.
    63. Ferrari, A.C. and J. Robertson, Origin of the 1150-cm(-1) Raman mode in nanocrystalline diamond. Physical Review B, 2001. 63(12).
    64. John, P., et al., The oxidation of (100) textured diamond. Diamond and Related Materials, 2002. 11(3-6): p. 861-866.
    65. Neuhaeuser, M., et al., Raman spectroscopy measurements of DC-magnetron sputtered carbon nitride (a-C : N) thin films for magnetic hard disk coatings. Diamond and Related Materials, 2000. 9(8): p. 1500-1505.
    66. Nistor, L.C., et al., Nanocrystalline diamond films: Transmission electron microscopy and Raman spectroscopy characterization. Diamond and Related Materials, 1997. 6(1): p. 159-168.
    67. Chen, C.L., C.S. Chen, and J.T. Lue, Field emission characteristic studies of chemical vapor deposited diamond films. Solid-State Electronics, 2000. 44(10): p. 1733-1741.
    68. Gan, L., et al., Electron field emission from the 2D hole gas in hydrogen terminated, polycrystalline diamond. Diamond and Related Materials, 2008. 17(3): p. 336-339.
    69. Ye, H.T., C.Q. Sun, and P. Hing, Control of grain size and size effect on the dielectric constant of diamond films. Journal of Physics D-Applied Physics, 2000. 33(23): p. L148-L152.
    70. Rottenberg, X., et al., Multi-physics simulation and reliability analysis for RF-MEMS devices, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems. 2008.
    71. Santos, H.J.D.L., RF MEMS for ubiquitous wireless connectivity: Part 1 - Fabrication, in Ieee Microwave Magazine. 2004. p. 36-49.

    下載圖示 校內:2013-08-08公開
    校外:2013-08-08公開
    QR CODE