| 研究生: |
張琦 Chang, Chi |
|---|---|
| 論文名稱: |
基板與熱處理對奈米鑽石薄膜性質的影響 Effects of substrate type and heat treatment on characteristics of diamond films |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 奈米鑽石 、熱處理 |
| 外文關鍵詞: | Nano-crystalline, heat treatment |
| 相關次數: | 點閱:79 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要以微波電漿輔助化學氣相沉積成長奈米鑽石薄膜,實驗中先討論鑽石鍍膜前,前處理的方式與差異;隨後分別比較鑽石薄膜沉積在各種基板上的差異,並討論鑽石在大氣中施以熱處理後鑽石薄膜在表面形貌、拉曼光譜、X 光光電子能譜與電性質上的改變。研究中發現,使用金屬鍍層鎢能夠有效的促進鑽石的成長,將成長速率由235 nm/hr提升至640 nm/hr,且與沉積與矽基板上的鑽石相比其結構並無明顯差異。
之後將所沉積出來的鑽石薄膜在大氣環境中施以熱處理,藉由拉曼光譜、掃描式電子顯微鏡、X光繞射、AFM、X 光光電子能譜等儀器,對熱處理後的鑽石薄膜性質做分析;實驗中,使用了三種不同參數所沉積的鑽石來作為熱處裡的試片,此三種鑽石分別具有不同的晶粒尺寸,觀察其在熱處理後試片表面形貌的變化,進一步比較不同大小的鑽石顆粒對於抵抗氧化能力的差異;並且利用黃光微影製造一電性值的量測元件,量測熱處理後鑽石電性質的改變,發現電阻值與電容值回隨著熱處理而改變,且熱處理後鑽石的電阻值受到試片表面的SP2含量而電容值則與平均晶粒大小有關。
Nano-crystalline diamonds were deposited by microwave plasma enhanced chemical vapor deposition on different substrates such as tungsten coated silicon, quartz, silicon. The different substrates exhibit various surface characteristics such that nano-crystalline diamonds having different growth rate and thickness uniformity were obtained. Selected diamonds were heat treated at different temperatures, ranging from 100 to 500 ℃ in ambient air for 1 hr. The heat treated diamonds were then subjected to not only property measurements but also material characteristics analyses. The capacitance a were determined before and after the heat treatments. In the mean time, atomic force microscopy, Raman spectroscopy, scanning electron microscopy, and X-ray Photoelectron Spectroscopy were used to characterize the as-deposited and heat-treated diamonds. Effects of heat treatments on the material characteristics are discussed. Correlation between the material characteristics and the electrical properties are also made.
1. Buijnsters, J.G., L. Vazquez, and J.J. ter Meulen, Substrate pre-treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth. Diamond and Related Materials, 2009. 18(10): p. 1239-1246.
2. Angus, J.C., H.A. Will, and W.S. Stanko, Growth of Diamond Seed Crystals by Vapor Deposition. Journal of Applied Physics, 1968. 39(6): p. 2915-&.
3. Joseph, P.T., et al., Transparent ultrananocrystalline diamond films on quartz substrate. Diamond and Related Materials, 2008. 17(4-5): p. 476-480.
4. Khomich, A.V., et al., Effect of high temperature annealing on optical and thermal properties of CVD diamond. Diamond and Related Materials, 2001. 10(3-7): p. 546-551.
5. Butler, J.E., et al., Understanding the chemical vapor deposition of diamond: recent progress. Journal of Physics-Condensed Matter, 2009. 21(36): p. -.
6. Mitsuda, Y., et al., The Growth of Diamond in Microwave Plasma under Low-Pressure. Journal of Materials Science, 1987. 22(5): p. 1557-1562.
7. Iijima, S., Y. Aikawa, and K. Baba, Early Formation of Chemical Vapor-Deposition Diamond Films. Applied Physics Letters, 1990. 57(25): p. 2646-2648.
8. Williams, O.A., et al., Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chemical Physics Letters, 2007. 445(4-6): p. 255-258.
9. Shenderova, O., S. Hens, and G. McGuire, Seeding slurries based on detonation nanodiamond in DMSO. Diamond and Related Materials, 2010. 19(2-3): p. 260-267.
10. Liu, H.M. and D.S. Dandy, Studies on Nucleation Process in Diamond Cvd - an Overview of Recent Developments. Diamond and Related Materials, 1995. 4(10): p. 1173-1188.
11. Dennig, P.A. and D.A. Stevenson, Influence of Substrate Topography on the Nucleation of Diamond Thin-Films. Applied Physics Letters, 1991. 59(13): p. 1562-1564.
12. Gruen, D.M., Nanocrystalline diamond films. Annual Review of Materials Science, 1999. 29: p. 211-259.
13. Xiao, X., et al., Low temperature growth of ultrananocrystalline diamond. Journal of Applied Physics, 2004. 96(4): p. 2232-2239.
14. Chen, L.J., et al., Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond. Journal of Applied Physics, 2007. 101(6): p. -.
15. Ternyak, O., R. Akhvlediani, and A. Hoffman, Study on diamond films with ultra high nucleation density deposited onto alumina, sapphire and quartz. Diamond and Related Materials, 2005. 14(3-7): p. 323-327.
16. Zhong, X.Y., et al., Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping. Journal of Applied Physics, 2009. 105(3): p. -.
17. Matsumoto, S., et al., Growth of Diamond Particles from Methane-Hydrogen Gas. Journal of Materials Science, 1982. 17(11): p. 3106-3112.
18. Kanetkar, S.M., et al., Diamond Nucleation on Epitaxially Grown Y-Zro2 Layers on Si(100). Applied Physics Letters, 1993. 63(6): p. 740-742.
19. Meyer, D.E., R.O. Dillon, and J.A. Woollam, Radio-Frequency Plasma Chemical Vapor-Deposition Growth of Diamond. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1989. 7(3): p. 2325-2327.
20. Suzuki, K., et al., Growth of Diamond Thin-Films by Dc Plasma Chemical Vapor-Deposition. Applied Physics Letters, 1987. 50(12): p. 728-729.
21. Lee, H.J., et al., Some novel aspects of nanocrystalline diamond nucleation and growth by direct current plasma assisted chemical vapor deposition. Diamond and Related Materials, 2010. 19(11): p. 1393-1400.
22. Ramesham, R., et al., Selective and Low-Temperature Synthesis of Polycrystalline Diamond. Journal of Materials Research, 1991. 6(6): p. 1278-1286.
23. Gurbuz, Y., et al., Diamond semiconductor technology for RF device applications. Solid-State Electronics, 2005. 49(7): p. 1055-1070.
24. Michaelson, S. and A. Hoffman, Hydrogen in nano-diamond films. Diamond and Related Materials, 2005. 14(3-7): p. 470-475.
25. McCauley, T.G., D.M. Gruen, and A.R. Krauss, Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma. Applied Physics Letters, 1998. 73(12): p. 1646-1648.
26. <以CCl4在hfcvd城長奈米鑽石薄膜.pdf>.
27. Liou, Y., et al., Low-Temperature Diamond Deposition by Microwave Plasma-Enhanced Chemical Vapor-Deposition. Applied Physics Letters, 1989. 55(7): p. 631-633.
28. Tzeng, Y., C. Liu, and A. Hirata, Effects of oxygen and hydrogen on electron field emission from microwave plasma chemically vapor deposited microcrystalline diamond, nanocrystalline diamond, and glassy carbon coatings. Diamond and Related Materials, 2003. 12(3-7): p. 456-463.
29. Spear, K.E., Chemical Vapor Deposition of Diamond and Ceramic Coatings. Materials Science Forum, 1994. 154.
30. Influence of Substrate Treatments on Diamond Thin-Film Nucleation. Thin Solid Films, 1992. 212(1-2): p. 63-67.
31. May, P.W. and Y.A. Mankelevich, From ultrananocrystalline diamond to single crystal diamond growth in hot filament and microwave plasma-enhanced CVD reactors: a unified model for growth rates and grain sizes. Journal of Physical Chemistry C, 2008. 112(32): p. 12432-12441.
32. Li, D.S., et al., Effects of methane concentration on diamond spherical shell films prepared by DC-plasma jet CVD. Solid State Ionics, 2008. 179(21-26): p. 1263-1267.
33. Williams, O.A., et al., Growth, electronic properties and applications of nanodiamond. Diamond and Related Materials, 2008. 17(7-10): p. 1080-1088.
34. Zhou, D., et al., Control of diamond film microstructure by Ar additions to CH4/H-2 microwave plasmas. Journal of Applied Physics, 1998. 84(4): p. 1981-1989.
35. Auciello, O. and A.V. Sumant, Status review of the science and technology of ultrananocrystalline diamond (UNCD (TM)) films and application to multifunctional devices. Diamond and Related Materials, 2010. 19(7-9): p. 699-718.
36. Zapol, P., et al., Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries. Physical Review B, 2002. 65(4): p. -.
37. Locher, R., et al., Nitrogen Stabilized (100) Texture in Chemical-Vapor-Deposited Diamond Films. Applied Physics Letters, 1994. 65(1): p. 34-36.
38. Buijnsters, J.G., P. Shankar, and J.J. Ter Meulen, Direct deposition of polycrystalline diamond onto steel substrates. Surface & Coatings Technology, 2007. 201(22-23): p. 8955-8960.
39. Xiao, X., et al., The failure mechanism of chromium as the interlayer to enhance the adhesion of nanocrystalline diamond coatings on cemented carbide. Diamond and Related Materials, 2009. 18(9): p. 1114-1117.
40. Wolter, S.D., J.T. Glass, and B.R. Stoner, Bias Induced Diamond Nucleation Studies on Refractory-Metal Substrates. Journal of Applied Physics, 1995. 77(10): p. 5119-5124.
41. Naguib, N.N., et al., Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers. Chemical Physics Letters, 2006. 430(4-6): p. 345-350.
42. Houska, J., et al., Mass spectrometry of nanodiamonds. Rapid Communications in Mass Spectrometry, 2009. 23(8): p. 1125-1131.
43. Buijnsters, J.G., et al., Enhancement of the nucleation of smooth and dense nanocrystalline diamond films by using molybdenum seed layers. Journal of Applied Physics, 2010. 108(10).
44. Peng, X.L. and T.W. Clyne, Formation and adhesion of hot filament CVD diamond films on titanium substrates. Thin Solid Films, 1997. 293(1-2): p. 261-269.
45. Liu, C., et al., Dielectric properties of hydrogen-incorporated chemical vapor deposited diamond thin films. Journal of Applied Physics, 2007. 102(7).
46. Michaelson, S., et al., Bulk and surface thermal stability of ultra nanocrystalline diamond films with 10-30 nm grain size prepared by chemical vapor deposition. Journal of Applied Physics, 2010. 107(9): p. -.
47. Gan, L., et al., The effect of grain boundaries and adsorbates on the electrical properties of hydrogenated ultra nano crystalline diamond. Diamond and Related Materials, 2009. 18(9): p. 1118-1122.
48. Ye, H.T., R.B. Jackman, and P. Hing, Spectroscopic impedance study of nanocrystalline diamond films. Journal of Applied Physics, 2003. 94(12): p. 7878-7882.
49. Jackman, R.B., et al., Nanocrystalline diamond as an electronic material: An impedance spectroscopic and Hall effect measurement study. Journal of Applied Physics, 2010. 107(3).
50. Wang, S.F., J.C. Pu, and J.C. Sung, High-temperature oxidation behaviors of CVD diamond films. Applied Surface Science, 2009. 256(3): p. 668-673.
51. Wang, S.F., J.C. Pu, and J.C. Sung, High-temperature oxidation behavior of nanocrystalline diamond films. Journal of Alloys and Compounds, 2010. 489(2): p. 638-644.
52. Yeh, C.S., et al., Effect of rapid thermal annealing treatment on the field-emission characteristics of nanocrystalline diamonds grown on various metal/silicon substrates. Journal of Materials Science-Materials in Electronics, 2010. 21(4): p. 385-392.
53. Robertson, J., Diamond-like amorphous carbon. Materials Science & Engineering R-Reports, 2002. 37(4-6): p. 129-281.
54. Kuzmany, H., et al., The mystery of the 1140 cm(-1) Raman line in nanocrystalline diamond films. Carbon, 2004. 42(5-6): p. 911-917.
55. Chu, P.K. and L.H. Li, Characterization of amorphous and nanocrystalline carbon films. Materials Chemistry and Physics, 2006. 96(2-3): p. 253-277.
56. Angadi, M.A., et al., Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. Journal of Applied Physics, 2006. 99(11): p. -.
57. Miyake, M., A. Ogino, and M. Nagatsu, Characteristics of nano-crystalline diamond films prepared in Ar/H-2/CH4 microwave plasma. Thin Solid Films, 2007. 515(9): p. 4258-4261.
58. Lee, J.C., et al., Nucleation and bulk film growth kinetics of nanocrystalline diamond prepared by microwave plasma-enhanced chemical vapor deposition on silicon substrates. Applied Physics Letters, 1996. 69(12): p. 1716-1718.
59. Ager, J.W., D.K. Veirs, and G.M. Rosenblatt, Spatially Resolved Raman Studies of Diamond Films Grown by Chemical Vapor-Deposition. Physical Review B, 1991. 43(8): p. 6491-6499.
60. Wada, N. and S.A. Solin, Raman Efficiency Measurements of Graphite. Physica B & C, 1981. 105(1-3): p. 353-356.
61. 探討奈米至微米尺度之鑽石氧化反應動力學機制.
62. Fernandes, A.J.S., et al., Nano- and micro-crystalline diamond growth by MPCVD in extremely poor hydrogen uniform plasmas. Diamond and Related Materials, 2007. 16(4-7): p. 757-761.
63. Ferrari, A.C. and J. Robertson, Origin of the 1150-cm(-1) Raman mode in nanocrystalline diamond. Physical Review B, 2001. 63(12).
64. John, P., et al., The oxidation of (100) textured diamond. Diamond and Related Materials, 2002. 11(3-6): p. 861-866.
65. Neuhaeuser, M., et al., Raman spectroscopy measurements of DC-magnetron sputtered carbon nitride (a-C : N) thin films for magnetic hard disk coatings. Diamond and Related Materials, 2000. 9(8): p. 1500-1505.
66. Nistor, L.C., et al., Nanocrystalline diamond films: Transmission electron microscopy and Raman spectroscopy characterization. Diamond and Related Materials, 1997. 6(1): p. 159-168.
67. Chen, C.L., C.S. Chen, and J.T. Lue, Field emission characteristic studies of chemical vapor deposited diamond films. Solid-State Electronics, 2000. 44(10): p. 1733-1741.
68. Gan, L., et al., Electron field emission from the 2D hole gas in hydrogen terminated, polycrystalline diamond. Diamond and Related Materials, 2008. 17(3): p. 336-339.
69. Ye, H.T., C.Q. Sun, and P. Hing, Control of grain size and size effect on the dielectric constant of diamond films. Journal of Physics D-Applied Physics, 2000. 33(23): p. L148-L152.
70. Rottenberg, X., et al., Multi-physics simulation and reliability analysis for RF-MEMS devices, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems. 2008.
71. Santos, H.J.D.L., RF MEMS for ubiquitous wireless connectivity: Part 1 - Fabrication, in Ieee Microwave Magazine. 2004. p. 36-49.