| 研究生: |
陳苡甄 Chen, Yi-Chen |
|---|---|
| 論文名稱: |
探討肝細胞癌對巨噬細胞活化及其表型變化的影響 Investigating the Effect of Hepatocellular Carcinoma on Macrophage Activation and Phenotypic Changes |
| 指導教授: |
林韋伶
Lin, Wei-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 肝細胞癌 、腫瘤相關巨噬細胞 、程序性死亡配體-1 、趨化因子 、免疫抑制 |
| 外文關鍵詞: | hepatocellular carcinoma, tumor-associated macrophages, PD-L1, chemokines, immunosuppression |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝細胞癌(hepatocellular carcinoma, HCC)是全球好發的惡性腫瘤,而腫瘤相關巨噬細胞(tumor-associated macrophages, TAMs)在其腫瘤微環境中扮演關鍵角色。TAMs具有促進腫瘤發展的特性,且與HCC不良預後密切相關,然而,目前針對HCC腫瘤細胞是否會直接活化巨噬細胞轉變為促腫瘤表型的相關研究仍然有限。本研究旨在探討HCC如何驅動巨噬細胞活化及其對腫瘤進程的影響。實驗上,以佛波醇12-十四烷醯-13-乙酸酯(phorbol 12-myristate 13-acetate)誘導THP-1單核細胞分化為巨噬細胞,並將其培養在HCC條件培養基(conditioned medium, CM)。我們的研究結果顯示,HCC組織中巨噬細胞浸潤高於正常肝組織,且HCC CM處理的巨噬細胞能顯著促進HCC細胞增殖。RNA定序資料顯示,HCC CM刺激後的巨噬細胞呈現促腫瘤轉錄重編程,其中程序性死亡配體-1 (programmed cell death ligand 1, PD-L1)表現及趨化因子訊號相關路徑顯著富集。此外,HCC活化的巨噬細胞培養上清中,白介素-1β (Interleukin-1β, IL-1β)、IL-6、IL-10及腫瘤壞死因子α (tumor necrosis factor α, TNF-α)濃度顯著上升。免疫轉漬與流式細胞儀分析確認HCC CM可誘導巨噬細胞PD-L1表現,且此現象經干擾素-γ (interferon-γ)共同刺激後更加顯著;但以初代人類肝細胞CM處理則未觀察到此現象。相反地,巨噬細胞CM並未誘導HCC細胞表現PD-L1。進一步分析發現,HCC CM刺激後,巨噬細胞中CXCL9、CXCL10、CCL1及CCL22等趨化因子mRNA表現顯著提升。綜合以上結果,HCC細胞可直接誘導巨噬細胞變成促腫瘤的表型,表現細胞激素與趨化因子分泌增加及PD-L1上升。HCC對巨噬細胞的直接活化,可能會藉由促進免疫抑制進一步推動HCC的進展。
Hepatocellular carcinoma (HCC) is a leading global malignancy, with tumor-associated macrophages (TAMs) playing a critical role in the tumor microenvironment (TME). TAMs are pro-tumorigenic and linked to poor prognosis in HCC; nevertheless, few studies have investigated whether HCC tumor cells directly activate macrophages into a pro-tumorigenic phenotype. This study aims to explore how HCC drives macrophage activation and its impact on HCC progression. THP-1 monocytes were differentiated into macrophages using phorbol 12-myristate 13-acetate (PMA). Following differentiation, these macrophages were incubated with HCC conditioned medium (CM). We demonstrated that HCC tissue showed higher macrophage infiltration than normal liver. HCC CM-treated macrophages promoted HCC cell proliferation. The RNA sequencing (RNA-seq) data showed a reprogrammed pro-tumorigenic transcriptome in HCC CM-treated macrophages, with pathways of programmed cell death ligand 1 (PD-L1) expression and chemokine signaling differentially enriched. Furthermore, interleukin (IL)-1β, IL-6, IL-10, and TNF-α were significantly elevated in the supernatants of HCC-activated macrophages. Immunoblotting and flow cytometry analysis showed that HCC CM induced macrophage PD-L1 expression, which was amplified by interferon-γ (IFN-γ). However, this phenomenon was not observed in macrophages treated with primary human hepatocyte CM. Conversely, macrophage CM did not induce PD-L1 in HCC cells. Moreover, chemokine mRNAs of CXCL9, CXCL10, CCL1, and CCL22 were profoundly enhanced in macrophages after HCC CM stimulation. These findings demonstrate that HCC cells can directly induce a pro-tumorigenic phenotype in macrophages, characterized by increased cytokine and chemokine production and elevated PD-L1 expression. This direct activation of macrophages by HCC may exert pro-tumor effects by linking immunosuppression to HCC progression.
1.Zhang, Q., et al., Deficiency in SLC25A15, a hypoxia-responsive gene, promotes hepatocellular carcinoma by reprogramming glutamine metabolism. J Hepatol, 2024. 80(2): p. 293-308.
2.Hwang, S.Y., et al., Hepatocellular carcinoma: updates on epidemiology, surveillance, diagnosis and treatment. Clin Mol Hepatol, 2025. 31(Suppl): p. S228-S254.
3.Llovet, J.M., et al., Hepatocellular carcinoma. Nat Rev Dis Primers, 2021. 7(1): p. 6.
4.Pardoll, D., Cancer and the Immune System: Basic Concepts and Targets for Intervention. Semin Oncol, 2015. 42(4): p. 523-38.
5.Kim, G.R. and J.M. Choi, Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy. Mol Cells, 2022. 45(8): p. 513-521.
6.Peggs, K.S., et al., Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med, 2009. 206(8): p. 1717-25.
7.Sen, D.R., et al., The epigenetic landscape of T cell exhaustion. Science, 2016. 354(6316): p. 1165-1169.
8.Sangro, B., et al., Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 2021. 18(8): p. 525-543.
9.Rimassa, L., R.S. Finn, and B. Sangro, Combination immunotherapy for hepatocellular carcinoma. J Hepatol, 2023. 79(2): p. 506-515.
10.El-Khoueiry, A.B., et al., Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet, 2017. 389(10088): p. 2492-2502.
11.Li, Q., et al., PD-1/PD-L1 checkpoint inhibitors in advanced hepatocellular carcinoma immunotherapy. Front Immunol, 2022. 13: p. 1070961.
12.Hao, X., et al., Targeting Immune Cells in the Tumor Microenvironment of HCC: New Opportunities and Challenges. Front Cell Dev Biol, 2021. 9: p. 775462.
13.Abou-Alfa, G.K., et al., Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid, 2022. 1(8): p. EVIDoa2100070.
14.Yau, T., et al., Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol, 2022. 23(1): p. 77-90.
15.Kim, C.G., et al., Hyperprogressive disease during PD-1 blockade in patients with advanced hepatocellular carcinoma. J Hepatol, 2021. 74(2): p. 350-359.
16.Arvanitakis, K., et al., Tumor-Associated Macrophages in Hepatocellular Carcinoma Pathogenesis, Prognosis and Therapy. Cancers (Basel), 2022. 14(1).
17.Liu, Y.T., et al., Macrophages as Targets in Hepatocellular Carcinoma Therapy. Mol Cancer Ther, 2024. 23(6): p. 780-790.
18.Zheng, H., et al., Targeting tumor-associated macrophages in hepatocellular carcinoma: biology, strategy, and immunotherapy. Cell Death Discov, 2023. 9(1): p. 65.
19.Strizova, Z., et al., M1/M2 macrophages and their overlaps - myth or reality? Clin Sci (Lond), 2023. 137(15): p. 1067-1093.
20.Schraufstatter, I.U., et al., The chemokine CCL18 causes maturation of cultured monocytes to macrophages in the M2 spectrum. Immunology, 2012. 135(4): p. 287-98.
21.Alvarado-Vazquez, P.A., et al., Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions. Immunobiology, 2017. 222(8-9): p. 900-912.
22.Liang, C., et al., Role of the AKT signaling pathway in regulating tumor-associated macrophage polarization and in the tumor microenvironment: A review. Medicine (Baltimore), 2025. 104(5): p. e41379.
23.Chen, S., et al., Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther, 2023. 8(1): p. 207.
24.Jin, D., et al., Prognostic impact of CD68+ tumor-associated macrophages in hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore), 2024. 103(16): p. e37834.
25.Lu, Y., et al., A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat Commun, 2022. 13(1): p. 4594.
26.Yao, C., et al., Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies. Cancer Biol Med, 2023. 20(1): p. 25-43.
27.Mano, Y., et al., Tumor-associated macrophage promotes tumor progression via STAT3 signaling in hepatocellular carcinoma. Pathobiology, 2013. 80(3): p. 146-54.
28.Wan, S., et al., Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology, 2014. 147(6): p. 1393-404.
29.Shirabe, K., et al., Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg Today, 2012. 42(1): p. 1-7.
30.Park, D.J., et al., Preferential Expression of Programmed Death Ligand 1 Protein in Tumor-Associated Macrophages and Its Potential Role in Immunotherapy for Hepatocellular Carcinoma. Int J Mol Sci, 2021. 22(9).
31.Lian, S.L., et al., Tumor-associated macrophages promoting PD-L1 expression in infiltrating B cells through the CXCL12/CXCR4 axis in human hepatocellular carcinoma. Am J Cancer Res, 2024. 14(2): p. 832-853.
32.Kuang, D.M., et al., Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med, 2009. 206(6): p. 1327-37.
33.Sung, P.S., Crosstalk between tumor-associated macrophages and neighboring cells in hepatocellular carcinoma. Clin Mol Hepatol, 2022. 28(3): p. 333-350.
34.Shen, Y., et al., TGF-beta regulates hepatocellular carcinoma progression by inducing Treg cell polarization. Cell Physiol Biochem, 2015. 35(4): p. 1623-32.
35.Cao, Q., et al., IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J Am Soc Nephrol, 2010. 21(6): p. 933-42.
36.Feng, H., et al., Tumor Microenvironment in Hepatocellular Carcinoma: Key Players for Immunotherapy. J Hepatocell Carcinoma, 2022. 9: p. 1109-1125.
37.Choi, B.S., et al., Differential impact of L-arginine deprivation on the activation and effector functions of T cells and macrophages. J Leukoc Biol, 2009. 85(2): p. 268-77.
38.Yang, Y., et al., The immune-metabolic crosstalk between CD3(+)C1q(+)TAM and CD8(+)T cells associated with relapse-free survival in HCC. Front Immunol, 2023. 14: p. 1033497.
39.Liu, M., et al., Targeted delivery of CCL3 reprograms macrophage antigen presentation and enhances the efficacy of immune checkpoint blockade therapy in hepatocellular carcinoma. J Immunother Cancer, 2025. 13(2).
40.Liang, C.M., et al., Chemokines and their receptors play important roles in the development of hepatocellular carcinoma. World J Hepatol, 2015. 7(10): p. 1390-402.
41.Ishihara, N., et al., Chemokine (C-C Motif) Ligand 2/CCR2/Extracellular Signal-Regulated Kinase Signal Induced through Cancer Cell-Macrophage Interaction Contributes to Hepatocellular Carcinoma Progression. Am J Pathol, 2025. 195(3): p. 589-608.
42.Yin, Z., et al., Macrophages activating chemokine (C-X-C motif) ligand 8/miR-17 cluster modulate hepatocellular carcinoma cell growth and metastasis. Am J Transl Res, 2017. 9(5): p. 2403-2411.
43.Fu, X.T., et al., Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int J Oncol, 2015. 46(2): p. 587-96.
44.Zhu, F., et al., Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol, 2016. 33(2): p. 17.
45.Yang, J., H. Lu, and L. Li, Chemokines: Orchestration of the Tumor Microenvironment and Control of Hepatocellular Carcinoma Progression. Cancer Med, 2025. 14(7): p. e70789.
46.Kohli, K., V.G. Pillarisetty, and T.S. Kim, Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther, 2022. 29(1): p. 10-21.
47.Huang, F. and X.P. Geng, Chemokines and hepatocellular carcinoma. World J Gastroenterol, 2010. 16(15): p. 1832-6.
48.Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57.
49.Sherman, B.T., et al., DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res, 2022. 50(W1): p. W216-W221.
50.Zong, Z., et al., M1 Macrophages Induce PD-L1 Expression in Hepatocellular Carcinoma Cells Through IL-1beta Signaling. Front Immunol, 2019. 10: p. 1643.
51.Zhang, J., et al., Hypoxia-inducible factor-1alpha/interleukin-1beta signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment. Hepatology, 2018. 67(5): p. 1872-1889.
52.Qi, F., et al., Time-series clustering of cytokine expression after transarterial chemoembolization in patients with hepatocellular carcinoma. Oncol Lett, 2020. 19(2): p. 1175-1186.
53.Ghorbani Vanan, A., et al., Macrophage polarization in hepatocellular carcinoma: a lncRNA-centric perspective on tumor progression and metastasis. Clin Exp Med, 2025. 25(1): p. 173.
54.Chen, Y., et al., TNF-alpha derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/beta-catenin pathway in SMMC-7721 hepatocellular carcinoma cells. Exp Cell Res, 2019. 378(1): p. 41-50.
55.Yu, M., et al., Tumor‑associated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review). Int J Oncol, 2024. 65(4).
56.Dong, N., et al., M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br J Cancer, 2019. 121(1): p. 22-33.
57.Bannister, M.E., et al., The Role of Macrophages in Hepatocellular Carcinoma and Their Therapeutic Potential. Int J Mol Sci, 2024. 25(23).
58.Wang, D., et al., Significance of the vascular endothelial growth factor and the macrophage migration inhibitory factor in the progression of hepatocellular carcinoma. Oncol Rep, 2014. 31(3): p. 1199-204.
59.Mu, X., et al., TGF-beta signaling is often attenuated during hepatotumorigenesis, but is retained for the malignancy of hepatocellular carcinoma cells. PLoS One, 2013. 8(5): p. e63436.
60.Guerra, A.D., et al., The Anti-Tumor Effects of M1 Macrophage-Loaded Poly (ethylene glycol) and Gelatin-Based Hydrogels on Hepatocellular Carcinoma. Theranostics, 2017. 7(15): p. 3732-3744.
61.Lv, C., et al., M1 Macrophages Enhance Survival and Invasion of Oral Squamous Cell Carcinoma by Inducing GDF15-Mediated ErbB2 Phosphorylation. ACS Omega, 2022. 7(13): p. 11405-11414.
62.Wang, L., et al., PD-L1-expressing tumor-associated macrophages are immunostimulatory and associate with good clinical outcome in human breast cancer. Cell Rep Med, 2024. 5(2): p. 101420.
63.Chung, Y., et al., Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity, 2009. 30(4): p. 576-87.
64.Duhen, T. and D.J. Campbell, IL-1beta promotes the differentiation of polyfunctional human CCR6+CXCR3+ Th1/17 cells that are specific for pathogenic and commensal microbes. J Immunol, 2014. 193(1): p. 120-9.
65.Borge, M., et al., CXCL12 is a costimulator for CD4+ T cell activation and proliferation in chronic lymphocytic leukemia patients. Cancer Immunol Immunother, 2013. 62(1): p. 113-24.
66.Yan, Y., et al., CCL19 and CCR7 Expression, Signaling Pathways, and Adjuvant Functions in Viral Infection and Prevention. Front Cell Dev Biol, 2019. 7: p. 212.
67.Huffman, A.P., et al., CCL5 mediates CD40-driven CD4+ T cell tumor infiltration and immunity. JCI Insight, 2020. 5(10).
68.Hojo, S., et al., High-level expression of chemokine CXCL16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Res, 2007. 67(10): p. 4725-31.
校內:2030-08-12公開