簡易檢索 / 詳目顯示

研究生: 蔡明岳
Tsai, Ming-yueh
論文名稱: 金鍺基高溫無鉛銲料與銅、鎳基材間之界面穩定性與相平衡
Interfacial stability and phase equilibria between the Au-Ge high-temperature Pb-free solder and Cu or Ni substrate
指導教授: 林士剛
Lin, Shih-Kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 高溫無鉛銲料Au-Ge共晶合金界面反應週期性交替介金屬層
外文關鍵詞: High-temperature Pb-free solders, Au-Ge eutectic solder, interfacial reactions, alternating interfacial layers.
相關次數: 點閱:123下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於高功率電子元件像是寬能帶晶片常需要處在高溫的環境裡,所以在元件裡銲接的部分就需要能夠耐高溫的材料。近年來,含有85 – 97 wt. %Pb的Pb-Sn合金統稱為高鉛銲料,被廣泛用於高溫銲接製成。然而,在Pb已經被證實對環境和人體健康有害後,已經被歐盟(EU)所通過的危害性物質限制指令(RoHS)禁止。所以尋找其他高溫無鉛材料就成為現在迫切的需求。本研究選擇Au-Ge共晶合金與銅、Ni作為反應偶以模擬在銲接過程之界面反應,提出界面反應與反應相成長的機制,並建構其三元系統之等溫截面相圖。
    Au-Ge共晶合金與Ni基材在400 oC之界面反應,經歷1小時反應後可以見到富金的F.C.C.(Au, Ge, Ni),NiGe,Ni2Ge在界面生成。當反應時間延長到4小時後可以看到已經有達6層的F.C.C.(Au, Ge, Ni)和NiGe週期性介金屬層交替生成。400 oC的穩定定圖和等溫截面圖將利用CALPHAD去計算,並且用來分析機制。當Ge作為主要擴散元素,則Ge將會在NiGe、Ni2Ge間累積,使界面開始不穩定,使新的F.C.C.(Au, Ge, Ni)、NiGe生成,導致原先生成的F.C.C.(Au, Ge, Ni)、NiGe往外分離。週期性熱力學不穩定性將導致新的交替層在隨後相繼成核。其擴散路徑將是liquid/F.C.C.-(Au, Ge, Ni)/NiGe/⋯/F.C.C.-(Au, Ge, Ni)/NiGe/Ni2Ge/Ni。而在300 oC的界面反應中,分別退火240、720、1830小時,則在界面處發現平整緊密相接的NiGe和Ni5Ge3介金屬層。過去發現週期性介金屬交替生成相的反應偶大多皆是在固相反應中發現,本研究為首個在液態/固態反應中發現,而固態/固態反應中未出現。
    在過去Au-12Ge/Cu中400 oC界面反應研究中,在退火6小時候界面處其生成相之擴散路徑為成Liquid/Au-rich F.C.C./ζ/X/ζ/Cu-rich F.C.C./(Cu),其中X為一無法辨認之三元相,經過EPMA成分分析其組成為Au-74.72Cu-16.97Ge至Au-77.65Cu-15.58Ge。並且在Au-12Ge/Cu中300 oC界面反應研究中,可清楚分辨共有三層IMC生成,認為其分別為F.C.C.(Au, Cu, Ge)、ζ相、X相。針對Au-Ge共晶合金與Cu基材在400oC和300oC反應中所發現一尚未被確認之X相,重新對ε1和ζ相附近之區域鑑定。根據新建立的Au-Ge-Cu三元相圖進行判斷,認為過去尚未被確認之X相為ε1相。

    High-temperature materials are demanding for high-power electronics, so the material of soldering need to support the high temperature. Currently, Pb is proven to be harmful to the environment and human health, so the searching for high temperature lead-free solders becoming to be a demanding need. In this study, we choose Au-Ge eutectic alloy to be the solder, reactions between Au-Ge solders and Ni or Cu substrates have to be investigated to evaluate the Au-Ge based high-temperature solders.
    In the results of the interfacial reaction between Au-12wt. % Ge (Au-12Ge) and Ni substrate, after a 8-hour reaction, the formation of F.C.C.-(Au, Ge, Ni)/NiGe alternating layers occurred in the interface. The stability diagrams and the 673 K isothermal section of the Au-Ge-Ni ternary system were calculated using the CALPHAD method to analyze the mechanism of alternating-layer formation. Ge was then determined to be the dominant diffusion specie. When Ge atoms accumulated at the NiGe/Ni2Ge interface, the interface became unstable and a new pair of F.C.C.-(Au, Ge, Ni)/NiGe would form, resulting in the previously-formed F.C.C.-(Au, Ge, Ni)/NiGe layers being separated from the original Ni2Ge/Ni substrate. The periodic thermodynamic instability caused subsequent nucleation of new alternating layers. The diffusion path across the interface is liquid/F.C.C.-(Au, Ge, Ni)/NiGe/⋯/F.C.C.-(Au, Ge, Ni)/NiGe/Ni2Ge/Ni. In the previous research, the alternating-layers structure was always found in the solid/solid interfacial reaction. Our research is the first diffusion couple that found this phenomenon only in the liquid/solid reaction, but not in the solid/solid reaction. In the past, the research of Au-12Ge/Cu interfacial reaction annealing at 400 oC and 300 oC, the unidentified “X” phase has been found and recognized as a ternary phase. The composition of X phase had a range from Au-74.72Cu-16.97Ge to Au-77.65Cu-15.58Ge. Therefore, we constructed the isothermal phase diagram of Au-Ge-Cu ternary system. We focus on the phase area near the ζ and ε1 phase. According to the new isothermal phase diagram, the “X” phase has been identified to be the ε1 phase.

    中文摘要 I 英文延伸摘要 III 致謝 VIII 目錄 IX 第一章 前言 1 第二章 文獻回顧 2 2.1 電子構裝 2 2.2 無鉛銲料 4 2.3 高溫無鉛銲料 6 2.3.1 Au-Ge共晶高溫銲料 8 2.4 相平衡 9 2.4.1 CALPHAD熱力學計算相圖 10 2.4.2 Au-Ge相圖 12 2.4.3 Cu-Ge相圖 13 2.4.4 Au-Cu 相圖 13 2.4.5 Au-Ge-Cu三元系統相平衡 14 2.4.6 Au-Ni相圖 15 2.4.7 Ge-Ni相圖 16 2.4.8 Au-Ge-Ni三元系統相平衡 17 2.5 界面反應 19 2.5.1 熱力學之驅動力 19 2.5.2 擴散路徑 20 2.5.3 Au-Ge合金與Ni和Cu基板之界面反應 25 第三章 實驗方法 31 3.1 Au-12Ge/Ni於400 oC下之液固界面反應 31 3.1.1 Au-12Ge合金製備 31 3.1.2 Au-12Ge合金與Ni基材之擴散偶製備與反應 31 3.2 Au-Ge-Ni 於400 oC下之等溫截面圖與穩定性圖 33 3.3 Au-12Ge/Ni於300 oC下之界面反應 33 3.3.1 Au-12Ge合金與Ni基材之擴散偶製備與反應 33 3.4 Au-Ge-Cu 400 oC下等溫截面相圖 33 3.5 分析 34 第四章 結果與討論 35 4.1 Au-12Ge/ Ni 於400 oC下之液固反應 35 4.1.1 微結構分析 35 4.1.2 週期性介金屬層 37 4.1.3 穩定性圖與主要擴散元素 42 4.1.4 成長機制 45 4.2 Au-12Ge/ Ni 於300 oC下之固固反應 48 4.2.1 微結構分析 48 4.3 Au-Ge-Cu 400 oC 等溫截面相圖 51 4.3.1 Cu-Ge 二元相圖 54 4.3.2 Au-Ge-Cu 400 oC等溫截面相圖 60 4.3.3 Au-12Ge/Cu 400 oC、300 oC界面反應相鑑定 69 第五章 結論 72 第六章 參考文獻 73 附錄Ⅰ:Au-Ge-Cu液相線投影圖 78

    1. Reinhardt, K. C. and M. A. Marciniak. “Wide-bandgap power electronics for the More Electric Aircraft. in Energy Conversion Engineering Conference”, Proceedings of the 31st Intersociety, IECEC 96., 1996.
    2. Dreike, P. L., D. M. Fleetwood, D. B. King, D. C. Sprauer and T. E. Zipperian, “An overview of high-temperature electronic device technologies and potential applications,”Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, 17(4) pp. 594-609,1994.
    3. McCluskey, F.P., M. Dash, Z. Wang and D. Huff (2006), “Reliability of high temperature solder alternatives,”Microelectronics Reliability, 46(9) pp. 1910-1914.
    4. 謝宗雍 (1997), 電子構裝技術簡介, in 電子月刊. p. 57-76.
    5. 陳信文, 陳立軒, 林永森 and 陳志銘 (2005), “電子構裝技術與材料.”
    6. Manikam, V. R. and K. Y. Cheong (2011), “Die attach materials for high temperature applications: a review,”Components, Packaging and Manufacturing Technology, IEEE Transactions on, 1(4) pp. 457-478.
    7. Zeng, G., S. Mcdonald and K. Nogita (2012), “Development of high-temperature solders: Review”, Microelectronics Reliability, 52(7) pp. 1306-1322.
    8. Suganuma, K., S.-J. Kim and K.-S. Kim (2009), “High-temperature lead-free solders: Properties and possibilities”, JOM Journal of the Minerals, Metals and Materials Society, 61(1) pp. 64-71.
    9. Chidambaram, V., J. Hattel and J. Hald (2011), “High-temperature lead-free solder alternatives”, Microelectronic Engineering, 88(6) pp. 981-989.
    10. Rettenmayr, M., P. Lambracht, B. Kempf and M. Graff (2005), “High Melting Pb‐Free Solder Alloys for Die‐Attach Applications”, Advanced engineering materials, 7(10) pp. 965-969.
    11. Okamoto, H. and T.B. Massalski (1984), “The Au− Ge (Gold-Germanium) system”, Bulletin of Alloy Phase Diagrams, 5(6) pp. 601-610.
    12. Chidambaram, V., J. Hald and J. Hattel (2010), “Development of Au–Ge based candidate alloys as an alternative to high-lead content solders”, Journal of Alloys and Compounds, 490(1–2) pp. 170-179.
    13. Kisiel, R. and Z. Szczepański (2009), “Die-attachment solutions for SiC power devices”, Microelectronics Reliability, 49(6) pp. 627-629.
    14. Leinenbach, C., F. Valenza, D. Giuranno, H. R. Elsener, S. Jin and R. Novakovic (2011), “Wetting and Soldering Behavior of Eutectic Au-Ge Alloy on Cu and Ni Substrates”, Journal of Electronic Materials, 40(7) pp. 1533-1541.
    15. Kattner, U. R (1997), “The thermodynamic modeling of multicomponent phase equilibria”, JOM, 49(12) pp. 14-19.
    16. Chang, Y-A., S. Chen, F. Zhang, X. Yan, F. Xie, S.-F. Rainer and W A. Oates (2004), “Phase diagram calculation: past, present and future”, Progress in Materials Science, 49(3) pp. 313-345.
    17. Liu, Z.-K. (2009), “First-principles calculations and CALPHAD modeling of thermodynamics”, Journal of phase equilibria and diffusion, 30(5) pp. 517-534.
    18. Wang, J., C. Leinenbach and M. Roth (2009), “Thermodynamic modeling of the Au–Ge–Sn ternary system”, Journal of Alloys and Compounds, 481(1–2) pp. 830-836.
    19. Olesinski, R.W. and G.J. Abbaschian (1986), “The Cu− Ge (Copper-Germanium) system”, Bulletin of Alloy Phase Diagrams, 7(1) pp. 28-35.
    20. Wang, J., S. Jin, C. Leinenbach and A. Jacot (2010), “Thermodynamic assessment of the Cu–Ge binary system”, Journal of Alloys and Compounds, 504(1) pp. 159-165.
    21. Okamoto, H., D.J. Chakrabarti, D.E. Laughlin and T.B. Massalski (1987), “The Au− Cu (gold-copper) system”, Journal of Phase Equilibria, 8(5) pp. 454-474.
    22. Sundman, B., S. G. Fries and W. A. Oates (1998), “A thermodynamic assessment of the Au-Cu system”, Calphad, 22(3) pp. 335-354.
    23. King, H. W., T. B. Massalski and L. L. Isaacs (1963), “Axial ratio changes in H.C.P. ζ phases in the systems AuInCu and CuGeAu”, Acta Metallurgica, 11(12) pp. 1355-1361.
    24. 許伯勳 (2013), “金鍺共晶銲料與銅基材之界面反應及 金-銅-鍺三元系統之相平衡.”
    25. Okamoto, H., (2010) “Phase Diagrams for Binary Alloys”, ASM International.
    26. Wang, J., X.-G. Lu, B. Sundman and X. Su (2005), “Thermodynamic assessment of the Au–Ni system”, Calphad, 29(4) pp. 263-268.
    27. Nash, A. and P. Nash (1987), “The Ge−Ni (Germanium-Nickel) system”, Bulletin of Alloy Phase Diagrams, 8(3) pp. 255-264.
    28. Jin, S., C. Leinenbach, J. Wang, L. I. Duarte, S. Delsante, G. Borzone, A. Scott and A. Watson (2012), “Thermodynamic study and re-assessment of the Ge-Ni system”, Calphad.
    29. Nash, A and P Nash (1987), “The Ge− Ni (Germanium-Nickel) system”, Bulletin of Alloy Phase Diagrams, 8(3) pp. 255-264.
    30. Shan, J., L. I. Duarte, G. Huang and C. Leinenbach (2012), “Experimental investigation and thermodynamic modeling of the Au–Ge–Ni system,”Monatshefte für Chemie-Chemical Monthly, 143(9) pp. 1263-1274.
    31. Wagner, C., (1938) “Über den Mechanismus von doppelten Umsetzungen durch Reaktion im festen Zustand,”Zeitschrift für anorganische und allgemeine Chemie, 236(1) pp. 320-338.
    32. Rapp, R. A., A. Ezis and G. J. Yurek (1973), “Displacement reactions in the solid state,”Metallurgical Transactions, 4(5) pp. 1283-1292.
    33. Kodentsov, A.A., G. F. Bastin and F. J. J. Van Loo (2001), “The diffusion couple technique in phase diagram determination,”Journal of alloys and compounds, 320(2) pp. 207-217.
    34. Kirkaldy, J S. and L.C. Brown (1963), “Diffusion behaviour in ternary, multiphase systems,”Canadian Metallurgical Quarterly, 2(1) pp. 89-115.
    35. 顏怡文 (2002), “銀-錫/銅與銀-錫/金系統之相平衡與界面反應的研究.”
    36. Van Loo, F. J.J., J. A. Van Beek, G. F. Bastin and R. Metselaar (1984), “On the layer sequence and morphology in solid-state displacement reactions,”Oxidation of Metals, 22(3-4) pp. 161-180.
    37. Tsai, C. M., W. C. Luo, C. W. Chang, Y. C. Shieh and C. R. Kao (2004), “Cross-interaction of under-bump metallurgy and surface finish in flip-chip solder joints,”Journal of Electronic Materials, 33(12) pp. 1424-1428.
    38. Cao, W., S. L. Chen, F. Zhang, K. Wu, Y. Yang, Y. A. Chang, R. Schmid-Fetzer and W. A. Oates (2009), “PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation,”Calphad, 33(2) pp. 328-342.
    39. Stern, K. H. (1954), “The Liesegang Phenomenon,”Chemical Reviews, 54(1) pp. 79-99.
    40. Wagner, C. (1950), “Mathematical analysis of the formation of periodic precipitations,”Journal of Colloid Science, 5(1) pp. 85-97.
    41. Osinski, K., A. W. Vriend, F. Bastin and F. J. J. Van Loo (1982), “Periodic Formation of FeSi Bands in Diffusion Couples Fe (15 Wt.-% Si)--Zn,”Zeitschrift fur Metallkunde, 73(4) pp. 258-261.
    42. Rijnders, M. R., J. A. V. Beek, A. A. Kodentsov and F. J. J. Van Loo (1996), “Solid State Reactions in the Ag-Ti-Si System-Periodic Layer Formation,”Zeitschrift fur Metallkunde, 87 pp. 732-739.
    43. Rijnders, M. R. and F. J. J. Van Loo (1995), “Aspects of periodic layer formation in Co2Si/Zn diffusion couples”, Vol. 32, New York, NY, ETATS-UNIS: Pergamon Press.
    44. Motojima, K, T. Asano, W. Shinmei and M. Kajihara (2012), “Kinetics of Solid-State Reactive Diffusion in the (Ni-Cr)/Sn System”, Journal of Electronic Materials, 41(12) pp. 3292-3302.
    45. Bhanumurthy, K. and S.-F. Rainer (2001), “Interface reactions between silicon carbide and metals (Ni, Cr, Pd, Zr) ”, Composites Part A: Applied Science and Manufacturing, 32(3) pp. 569-574.
    46. Shiau, F. Y., Y. Zuo, X. Y. Zheng, J. C. Lin and Y. A. Chang (1988), “Interfacial Reactions Between Co and GaAs”, MRS Online Proceedings Library, 119 pp. null-null.
    47. Dunaev, S. F. and S. A. Zver'kov (1989), “Influence of high pressure on the formation of periodic regular structures in multicomponent diffusion zones”, Journal of the Less Common Metals, 153(1) pp. 143-150.
    48. He, M., X. Su, F. Yin, J. Wang and Z. Li (2008), “Periodic layered structure in Ni3Si/Zn diffusion couples”, Scripta Materialia, 59(4) pp. 411-413.
    49. Rijnders, M. R., A. A. Kodentsov, C. Cserháti, J. V. D. Akker and F. J. J. Van Loo. “Periodic Layer Formation During Solid State Reactions. in Defect and Diffusion Forum”, 1996. Trans Tech Publ.
    50. Chen, Y.C., J. Xu, X. Fan, X. Zhang, L. Han, D. Lin, Q0 Li and C. Uher (2009), “The mechanism of periodic layer formation during solid-state reaction between Mg and SiO2”, Intermetallics, 17(11) pp. 920-926.
    51. Oberhauser, S., . Strobl, G. Schreiber, C. Wuestefeld and D. Rafaja (2010), “Formation of periodic patterns in the (Ni, W)/Al diffusion couples”, Surface and Coatings Technology, 204(14) pp. 2307-2315.
    52. Mazaudier, F., C. Proye and F. Hodaj (2008), “Further insight into mechanisms of solid-state interactions in UMo/Al system”, Journal of Nuclear Materials, 377(3) pp. 476-485.
    53. Chen, Y. C., X. F. Zhang, L. Han and Z. W. Du (2012), “Periodic layer formation during solid state reaction between Zn and CuTi”, Materials Letters, 76 pp. 151-154.
    54. Chen, C.-C., S.-W. Chen and C.-H. Chang (2008), “Solid/solid interfacial reactions between Sn-0.7 wt% Cu and Ni-7 wt% V”, Journal of Materials Research, 23(7) pp. 1895-1901.
    55. Chen, Y. C., Y. G. Zhang and C. Q. Chen (2003), “Quantitative descriptions of periodic layer formation during solid state reactions”, Materials Science and Engineering: A, 362(1) pp. 135-144.
    56. Kao, C. R. and Y. A. Chang (1993), “A theoretical analysis for the formation of periodic layered structure in ternary diffusion couples involving a displacement type of reactions”, Acta metallurgica et materialia, 41(12) pp. 3463-3472.
    57. Shiau F.-Y., Y. A. Chang and Lin J.-C. (1992), “Reactions between cobalt and gallium arsenide in bulk and thin-film forms”, Materials Chemistry and Physics, 32(3) pp. 300-309.
    58. Rijnders, M. R. and F. J. J. Van Loo (1995), “Aspects of periodic layer formation in Co2SiZn diffusion couples”, Scripta metallurgica et materialia, 32(12) pp. 1931-1935.
    59. Rijnders, M. R., A. A. Kodentsov, J. A. Van Beek, J. Van Den Akker and F. J. J. Van Loo (1997), “Pattern formation in Pt-SiC diffusion couples”, Solid State Ionics, 95(1–2) pp. 51-59.
    60. Gutman, I., I. Gotman and M. Shapiro (2006), “Kinetics and mechanism of periodic structure formation at SiO2/Mg interface”, Acta Materialia, 54(18) pp. 4677-4684.
    61. Chen, C.-M. and C.-H. Chen (2007), “Interfacial reactions between eutectic SnZn solder and bulk or thin-film Cu substrates”, Journal of Electronic Materials, 36(10) pp. 1363-1371.
    62. Rhines, F. N. (1956), “Phase diagrams in metallurgy: their development and application”, McGraw-Hill Companies.

    下載圖示 校內:2019-08-04公開
    校外:2019-08-04公開
    QR CODE