簡易檢索 / 詳目顯示

研究生: 吳竑儁
Wu, Hung-chun
論文名稱: 甲醯胺二聚物以及甲醯胺與甘胺酸配對物間氫鍵之理論計算研究
Theoretical Studies of Hydrogen Bonding Interaction in Formamide Dimer and in Complex of Formamide with Glycine
指導教授: 王小萍
Wang, Shao-pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 64
中文關鍵詞: 甘胺酸甲醯胺
外文關鍵詞: glycine, formamide
相關次數: 點閱:57下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甲醯胺和甘胺酸,分別為具有肽鍵型態的最小分子以及最簡單的胺基酸形式,因此常被用來當作基本模型研究蛋白質、DNA鹼基對等分子間的作用。本文利用密度泛涵理論(DFT)計算這兩個分子間的配對行為以及甲醯胺二聚物及其衍生物的配對行為,來模擬胺基酸與肽鍵之間的氫鍵作用,以及鹼基對間的氫鍵作用。
    除了傳統觀點來看氫鍵,本文也利用了NBO分析中的E(2)值和s特徵值的變化,來探討其鍵結行為,結果分析發現到利用C-H當作氫鍵給予者時,在IR光譜上會有”藍位移”的現象發生,此現象也說明了利用C-H來形成氫鍵時,重新混成會主導氫鍵的發生。
    比較甲醯胺二聚物及其衍生物的氫鍵行為,可以看到二級靜電效應對整體配對物穩定性的影響;二級靜電排斥會使配對物的穩定性變差,二級靜電吸引則會使配對物的穩定性變好;而當二級靜電吸引過強時,進而會導致軌域之間有相互作用,轉變為一級靜電吸引行為,從NBO分析中的E(2)值可以直接證明此行為的發生。

    Formamide is one of the simplest molecules exhibiting the peptide type of bonding and glycine is the simplest amino acid, they usually chosen as a model for studying biological systems, protein and DNA structures. We use Density Function Theory (DFT) to calculate the hydrogen bonding interaction between these two molecules and between formamide dimmer to simulate peptide bond interaction with amino acid and hydrogen bonding behavior in DNA molecules.
    Besides the classical view to analyze hydrogen bonding, here we use E(2) and s-character from NBO to analyze hydrogen bonding behavior. From results, when use C-H serve as hydrogen bonding donor can find “blue shift” in IR spectrum. This phenomenon to show that rehybridization lead to product of hydrogen bond when we use C-H serve as hydrogen bonding donor
    To compare hydrogen bonding interaction between formamide dimmer and complex with its derivatives, we can see secondary electrostatic interactions effect. Secondary repulsion let stability of complexes become worse; but secondary attraction let it become better. When secondary attraction is stronger, it will lead to interaction between bonding and antibonding orbitals and lead to it become primary electrostatic interactions. We can use E(2) from NBO to prove this behavior.

    摘要……………………………………………………………………I Abstract…………………………………………………………………Ⅱ 謝誌……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 表目錄…………………………………………………………………Ⅵ 圖目錄…………………………………………………………………Ⅶ 第一章 緒論 ……………………………………………………………1 第二章 理論背景 ………………………………………………………3 2-1胺基酸……………………………………………………………3 2-2胜肽………………………………………………………………6 2-3甲醯胺……………………………………………………………8 2-4氫鍵. ……………………………………………………………9 第三章 計算原理與方法………………………………………………13 3-1計算理論 ………………………………………………………13 3-1.1 HF 理論方法 ………………………………………………13 3-1.2 DFT 理論方法………………………………………………14 3-1.3 基底…………………………………………………………16 3-1.4 分裂基底……………………………………………………17 3-1.5 極化函數……………………………………………………18 3-1.6 擴散函數……………………………………………………18 3-1.7 限定自洽場與非限定自洽場簡介…………………………19 3-1.8 天然鍵性軌域 (NBO)………………………………………20 3-2 計算方法………………………………………………………23 3-2.1 選用軟體……………………………………………………23 3-2.2 採用的計算條件……………………………………………24 3-2.3 計算流程……………………………………………………24 3-2.4 計算指令……………………………………………………25 3-2.5 幾何最佳化的目的…………………………………………26 第四章 結果與討論……………………………………………………28 4-1 理論方法及基底選擇…………………………………………28 4-2 formamide和glycine配對物…………………………………29 4-2.1 模型建立……………………………………………………29 4-2.2 穩定能(Stabilization Energy,SE)分析 ……………31 4-2.3 影響穩定能因素……………………………………………31 4-3 formamide及其衍生物 ………………………………………38 4-3.1 formamide二聚物 …………………………………………38 4-3.2 formamide衍生物及二級靜電效應 ………………………41 4-4 相關表格………………………………………………………49 第五章 結論……………………………………………………………60 參考文獻 ………………………………………………………………61

    [1] 黃蔭樨,”哈柏氏生物化學”, 藝軒圖書出版社 (2000)
    [2] R.F. Boyer,”Concepts in biochemistry”,2thed, Wiley,New York (2002)
    [3] 潘家寅,”大學化學(上)”,科技圖書股份有限公司 (1990)
    [4] 周延鑫,”生物物理學導論”,華香園出版社 (1987)
    [5] 曾國輝,”大學生物化學”,藝軒圖書出版社 (1983)
    [6] 黃蔭樨,”基礎生物化學”,五南圖書出版社 (1982)
    [7] 趙大衛,”生化學(上)”,徐氏基金會 (1980)
    [8] Lovas, F. J.; Suenram, R. D.; Fraser, G. T. J. Chem. Phys. 1988, 88, 722.
    [9] Fraser, G. T.; Suenram, R. D.; Lovas, F. J. J. Mol. Struct. 1988, 165, 189.
    [10] Del Bene, J. E. J. Chem. Phys. 1975, 62, 1961.
    [11] Hinton, J. F. R.; Harpool, D. J. Am. Chem. Soc. 1997, 99, 349.
    [12] Jasien, P. G.; Stevens, W. J. J. Chem. Phys. 1986, 84, 3721.
    [13] Coitino, E. L.; Irving, K. J. Mol. Struct. 1990, 210, 405.
    [14] Engdahl, A.; Nelander, B. J. Chem. Phys. 1993, 99, 4894.
    [15] Sim, F.; St-Amant, A. J. Am. Chem. Soc. 1992, 114, 4391.
    [16] Sathyan, N.; Santhanam, V.; Sobhanadri, J. J. Mol. Struct. 1995, 333, 179.
    [17] Shivaglal, M. C.; Singh, S. Int. J. Quantum. Chem. 1992, 44, 679.
    [18] Contador, J. C.; Sanchez, M. L.; Aguilar, M. A.; Olivares del Valle, F. J. J. Chem.Phys. 1996, 104,5539.
    [19] Besley, N. A.; Hirst, J. D. J. Am. Chem. Soc. 1999, 121, 8559.
    [20] Allerhand, A.; Schleyer, P. V. R. J. Am. Chem. Soc. 1963, 85, 1715.
    [21] (a) Budesinsky, M.; Fiedler, P.; Arnold, Z. Synthesis 1989, 858. Boldeskul, I.E.;Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. J. Mol. Struct. 1997, 436, 167.
    (b) Hobza, P.; Sÿpirko, V.; Havlas, Z.; Buchhold, K.; Reimann, B.; Barth, H. D.; Brutschy, B. Chem. Phys. Lett. 1999, 299, 180. Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560.
    (c) Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem. Soc. 2002, 124, 11854.
    [22] (a)Hobza, P.; Sÿpirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998, 102, 2501.
    (b) Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447.
    [23] Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066.
    [24] Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253.
    [25] (a) Scheiner, S.; Grabowski, S. J.; Kar, T. J. Phys. Chem. A 2001, 105, 10607.
    (b) Scheiner, S.; Kar, T. J. Phys. Chem. A 2002, 106, 1784.
    [26] (a) An Appraisal of Valence-Bond Structures and Hybridization in Compounds of The First-Row Elements. Bent, H. A. Chem. Rev. 1961, 61, 275.
    (b) Baldridge, K. K.; Siegel, J. S. Chem. Rev. 2002, 124, 5514.
    (c) Lemke, F. R.; Galat, K. J. Youngs, W. J. Organometallics 1999, 18, 1419.
    (d) Kaupp, M.; Malkina, O. L. J. Chem. Phys. 1999, 108, 3648.
    (e) Palmer, M. H. J. Mol. Struct. 1997, 405, 179.
    (f) Palmer, M. H. J. Mol. Struct. 1997, 405, 193.
    (g) Jonas, V.; Boehme, C.; Frenking G. Inorg. Chem. 1996, 35, 2097.
    (h) Root, D. M.; Landis, C. R.; Cleveland, T. J. Am. Chem. Soc. 1993, 115, 4201.
    (i) Kaupp, M.; Schleyer, P. V. R. J. Am. Chem. Soc. 1993, 115, 1061.
    (j) Fantucci, P.; Valenti, V. J. Chem. Soc., Dalton Trans. 1992, 1981.
    (k) Xie, Y. M.; Schaefer, H. F.; Thrasher, J. S. J. Mol. Struct. 1991, 80, 247.
    (l) Kaupp, M. Chem. Eur. J. 1999, 5, 3631.
    [27] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al., GAUSSIAN 98, Gaussian, Inc., ittsburgh, PA, 1998.
    [28] Bondi, A. J. Phys. Chem. 1964, 68, 441.
    [29] Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69
    [30] Weeny, R. M. ; Dierksen, G. ; Nugent, W. A. ; Harlow, R. L. J. Chem. Phys. 1968, 49, 4852.
    [31] (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
    (b) Kohn, W.; Sham, L. J. Physical Review 1965, 140, A1133.
    (c) Salahub, D. R.; Zerner, M. C. Eds. The Challenge of d and f Electrons (ACS, Washington, D.C., 1989).
    (d) Parr R. G.; Yang W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).
    [32] Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids(McGraw-Hill, New York, 1974).
    [33] Hohenberg, P. ; Kohn, W. Physical Review 1964, 136, B864.
    [34] Kohn, W. ; Sham, L. J. Physical Review 1965, 140, A1133.
    [35] Salahub, D. R. ; Zerner, M. C. Eds. The Challenge of d and f Electrons (ACS, Washington, D.C., 1989).
    [36] Parr, R. G. ; Yang, W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).
    [37] Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
    [38] Becke, A. D. Phys. Rev. 1988, A38, 3098.
    [39] Lee, C. ; Yang, W. ; Parr, R. G. Physical Review 1988, B37, 785.
    [40] Miehlich, B. ; Savin, A. ; Stoll, H. ; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
    [41] Wong, N. B.; Cheung, Y. S.; Wu, D. Y.; Ren, Y.; Wang, X.; Tian, A. M.; Li, W. A. J. Mol. Struct. 2000, 507, 153.
    [42] Aubauer, C.; Klapotke, T. M.; Schulz, A. J. Mol. Strust. 2001, 543, 285.
    [43] Yang, W.; Drueckhammer, D. G. J. Am. Chem. Soc. 2001, 123, 11004.
    [44] Anane, H.; Boutalib, A.; Nebot-Gil I.; Tomas, F. J. Phys. Chem. A 1998, 102, 7070.
    [45] Reed, A. E. ; Weinhold, F. J. Chem. Phys. 1986, 84, 5687.
    [46] Weinhold, F. J. Mol. Struct. 1997, (Theochem) 181, 398.
    [47] Mitzel, N. W. ; Losehand, U. J. Am. Chem. Soc. 1998, 120, 7320.
    [48] Goodman, L. ; Pophristic, V. ; Weinhold, F. Acc. Chem. Res. 1999, 32, 983.
    [49] Hobza, P. ; Sponer, J. ; Cubero, E. ; Orozco, M. ; Luque, F. J. J. Phys. Chem. B 2000, 104, 6286.
    [50] Reimann, B. ; Buchhold, K. ; Vaupel, S. ; Brutschy, B. ; Havlas, Z. ; Spirko, V. ; Hobza, P. J. Phys. Chem. A 2001, 105, 5560.
    [51] Ananthavel, S. P. ; Manoharan, M. Chem. Phys. 2001, 49, 269.
    [52] Wilkens, S. J. ; Weatler, W. M. ; Weinhold, F. ; Markley; J. L. J. Am. Chem. Soc. 2002, 124, 1190.
    [53] Liu, R. F.; Dennis, R. T.; Jefferey, A. C.; Panla, R. M. J. Phys.Chem. 1996, 100, 3430.
    [54] Zhou, X. F.; Liu, R. F. Spectrochem. Acta Part A 1997, 53, 259.
    [55] Nwobi, O.; Higgins, J.; Zhou, X. F.; Liu R. F. Chem. Phys. Lett.1997, 272, 155.
    [56] Yun Shi, Zheng-yu Zhou , Hai-tao Zhang J. Phys. Chem. A 2004,108,6414-6420
    [57] Li, X.; Liu, L.; Schlegel, H. B. J. Am. Chem. Soc. 2002, 124, 9639
    [58] Fang, Y.; Fan, J.-M.; Liu, L.; Li, X.-S., Guo, Q.-X. Chem. Lett. 2002, 116.Fan, J. M.; Liu, L.; Guo, Q.-X. Chem. Phys. Lett. 2002, 365, 464.
    [59] Gu, Y.; Kar, T.; Scheiner, S. J. Am. Chem. Soc. 1999, 121, 9411.
    [60] Bader, R. W. F. Atoms in Molecules. A Quantum Theory; Oxford UniversityPress : Oxford, U.K., 1990.
    [61] Cubero, E.; Orozco, M.; Hobza, P.; Luque, F. J. J. Phys. Chem. A 1999,103, 6394.
    [62] Liu, S. Y.; Dykstra, C. E.; Malik, D. J. Chem. Phys. Lett. 1986, 130, 403.46.Liu, S.; Dykstra, C. E. J. Phys. Chem. 1986, 90, 3097. Liu, S. Y.; Dykstra,C. E. Chem Phys. Lett. 1987, 136, 22. Dykstra,C. E. Acc. Chem. Res.1988, 21, 355. Parish, C.A.; Dykstra, C. E. J. Phys. Chem. 1993, 97,9374
    [63] Masunov, A.; Dannenberg, J. J., Contreras, R. H. J. Phys. Chem. A. 2001,105, 4737.
    [64] Jin-feng Lu, Zheng-yu Zhou, Qun-yan Wu, Gang Zhao, theochem 2005,724, 107–114
    [65] Szatyłowicz H.; Krygowski T. M. Molecular Geometry as a Source of Chemical Information. Part I: How H-bonding Modifies Molecular Structure in the Vicinity of Hydrogen Donating Group.The Case of Phenol Derivatives Interacting with Nitrogen and Oxygen Bases. Pol. J. Chem. 2004, 78, 1719-1731

    下載圖示 校內:立即公開
    校外:2007-07-01公開
    QR CODE