簡易檢索 / 詳目顯示

研究生: 黃子瀚
Huang, Zi-Han
論文名稱: 內生性亨廷頓相關蛋白40在細胞壓力中的角色
Roles of endogenous HAP40 in cellular stresses
指導教授: 何盧勳
Her, Lu-Shiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 102
中文關鍵詞: 亨廷頓蛋白亨廷頓相關蛋白40內質網壓力高基氏體壓力氧化壓力
外文關鍵詞: Huntingtin, Huntingtin associated protein 40, ER stress, golgi stress, Oxidative stress
相關次數: 點閱:84下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 亨廷頓舞蹈症(Huntington’s disease)是因為huntingtin(Htt)基因exon1中的CAG不正常增長,所造成的一種顯性神經退化性疾病,其主要病徵為突變的亨廷頓蛋白(huntingtin)會不正常的聚集堆積在神經元中。亨廷頓蛋白能夠與多種蛋白質有交互作用已調控細胞中的作用機制。已知亨廷頓相關蛋白40會和亨廷頓蛋白結合,調控早期內噬體在微管上的運輸。在Hdh140Q/140Q亨廷頓舞蹈症模式小鼠中發現亨廷頓相關蛋白40蛋白表現量會顯著下降,在實驗室先前研究中發現,STHdhQ111/Q111和大鼠轉殖ST14A-120Q細胞中,亨廷頓相關蛋白40表現量都會有顯著的降低,目前對於亨廷頓相關蛋白40詳細作用機制仍不清楚。亨廷頓舞蹈症會對不同胞器造成損害,並使其功能失調,導致各種細胞壓力的生成。目前細胞壓力分為內質網壓力、高基氏體壓力以及氧化壓力三種。一旦內質網裝載過多的未摺疊蛋白質以及錯誤摺疊的蛋白質,便會產生內質網壓力,細胞會去活化未摺疊蛋白質反應(unfolded protein response, UPR) 以應付蛋白質折疊的改變。當高基氏體受到損害,會使高基氏體蛋白質ACBD3表現量顯著增加並且廣泛分布細胞質中,引起高基氏體壓力。粒線體中ROS的含量平衡受到破壞,便會產生氧化壓力(oxidative stress),破壞粒線體的動態平衡,加速細胞老化速度,甚至直接導致細胞死亡。當粒線體受到嚴重的氧化傷害,會藉由動態平衡機制,經由連續的分裂(fission)和融合(fusion)相互作用,用以維持粒線體細胞型態,回復或是移除受損的胞器。在本篇論文我們探討內生性亨廷頓相關蛋白40在HD造成不同細胞壓力過程中扮演的角色。首先在Neuro2a細胞中處理能夠誘導不同細胞壓力的藥物。實驗結果發現在藥物誘導內質網壓力和高基氏體壓力情況下,會使亨廷頓相關蛋白40表現量顯著下降,氧化壓力對亨廷頓相關蛋白40表現量則沒有顯著影響。接著利用knockdown shRNAs來降低內生性亨廷頓相關蛋白40在細胞中的表現量進行研究。結果發現亨廷頓相關蛋白40不會誘導內質網壓力生成。另外降低內生性亨廷頓相關蛋白40表現量,會影響高基氏體型態,增加高基氏體擴散的比例。PHB是一由PHB1和PHB2組成的二聚體,鑲嵌在粒線體膜上的蛋白質,具有調控粒線體DNA表現的功能。研究指出在MEFs、HeLa和肌肉細胞中,降低PHB表現量,會造成粒線體分裂。另外文獻說明,STHdhQ111/Q111相較於STHdhQ7/Q7細胞,會增加粒線體分裂,使粒線體融合功能受損。而實驗室先前研究發現大鼠轉殖ST14A-120Q細胞中,亨廷頓相關蛋白40和PHB1表現量會有顯著的下降。因此我們推論降低內生性亨廷頓相關蛋白40可能會對粒線體動態平衡產生影響,結果發現降低內生性亨廷頓相關蛋白40表現量會使粒線體分裂比列顯著增加,並且影響粒線體分裂與融合機制相關蛋白表現量。進一步研究發現,降低內生性亨廷頓相關蛋白40表現量會影響電子傳遞鏈相關蛋白表現量,導致細胞中ATP濃度變化。在降低內生性亨廷頓相關蛋白40表現量並且同時過度表現PHB1或是HttQ23F則能夠改善粒線體分裂的情況。進一步研究內生性亨廷頓相關蛋白40在細胞中的生理功能,發現降低內生性亨廷頓相關蛋白40影響細胞訊號傳遞,能夠抑制Akt路徑,活化JNK路徑。另外,過度表現亨廷頓相關蛋白40會增加MG132生成的聚集體,亨廷頓相關蛋白40可能影響聚集體降解錯誤折疊蛋白質作用機制。最後我們想進行蛋白質結晶實驗,藉以獲得亨廷頓相關蛋白40蛋白結晶結構,而在進行GST-hHAP40純化實驗過程中,發現hHAP40會和粒線體蛋白質OmpF產生交互作用。

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by expansion of polyglutamine repeats in the gene for huntingtin (Htt). In HD the corpus striatum selectively degenerates despite uniform expression of mutant huntingtin (mHtt) throughout the brain and body. Previous study showed that Htt-HAP40 complex is an effector of Rab5 that regulates dynamics of early endosomes. Striatal synaptosomes of 12 month old Hdh140Q/140Q mice had lower levels of HAP40. In HD studies indicated, damaged ER, golgi and mitochondria are dysfunctional, result in cellular stresses. Alterations in mitochondria and increased oxidative stress are associated with the disease progression in Huntington’s disease (HD). Endoplasmic reticulum (ER) stress and oxidative damage are linked through the close communication between the ER and mitochondria. It is unclear that the HAP40 mechanism. Here, We assess the role of HAP40 in cellular stresses. Our data revealed that HAP40 is downregulated by ER stress and golgi stress. We found that depletion of HAP40 affected golgi morphology. However, neither depletion nor overexpresion of HAP40 induces ER stress. Our previous studies showed that ST14AHtt-Q120 low, 1-548, HUMAN cell had lower levels of HAP40 and PHB1. PHB1 can be a mitochondria marker. Therefore, we tested wether depletion of HAP40 affect mitochondria dynamics. Results indicated that deplation of HAP40 increases mitochondria fragmention. Western blot assays showed that depletion of HAP40 affected mtiochondria fission and fusion related protein levels. Depletion of HAP40 also affected signaling pathways, inhibiting Akt pathway and activing JNK pathway. Finally, we found that overexpresion of PHB1 or HttQ23F could rescue mitochondria fragmention by depletion of HAP40; In the process of purifying GST-HAP40 for structural analysis, we found that HAP40 could interact with OmpF.

    摘要 I 致謝 VII 目錄 IX 縮寫表 XII 前言 1 一、亨廷頓舞蹈症 (Huntington’s disease,HD) 1 二、亨廷頓蛋白 (Huntingtin, Htt) 1 三、亨廷頓相關蛋白40 (Huntingtin associated protein 40, HAP40) 2 四、內質網壓力(ER stress) 3 五、氧化壓力(Oxidative stress) 4 六、粒線體的動態平衡(mitochondria dynamics) 5 實驗目的 8 材料與方法 9 一、藥品、抗體和質體 9 二、細胞培養(Cell culture) 11 三、轉染作用(Transfection) 14 四、細胞免疫螢光染色(Immunofluorescence staining) 14 五、西方墨點法(Western blot assay) 15 六、ATP assay 18 七、聚集體染色法(Aggresome detection) 19 八、重組蛋白純化(Purification) 20 九、Coomassie blue 染色法 21 十、統計方法(Statistics) 22 結果 23 一、不同的細胞壓力降低內生性HAP40的表現 23 二、利用shRNA降低內生性Htt和HAP40的表現量。 24 三、HAP40對內質網壓力的影響 25 3-1、降低內生性HAP40表現量不會誘導內質網壓力生成 25 3-2、過度表現HAP40不會誘導內質網壓力生成 26 四、HAP40對高基氏體型態的影響 26 五、HAP40對粒線體動態平衡的影響 27 5-1、降低內生性Htt和HAP40表現量造成粒線體分裂並且影響ATP濃度。 27 5-2、降低內生性Htt和HAP40表現量影響粒線體分裂與融合機制相關蛋白 29 5-3、降低內生性PHB1表現量對Htt、HAP40和OPA1的影響 30 5-4、在降低內生性HAP40表現量並同時過度表現PHB1或是HttQ23F,能夠改善粒線體分裂情況 31 5-5、降低內生性Htt和HAP40表現量對氧化壓力和電子傳遞鏈的影響 32 六、降低內生性Htt和HAP40表現量對訊號傳遞的影響 33 七、亨廷頓相關蛋白對聚集體(Aggresome)的影響 34 八、純化GST-hHAP40蛋白質 35 九、hHAP40會與Omp F產生交互作用 37 討論 39 參考文獻 44 圖與圖誌 56 圖一、不同的細胞壓力對Htt和HAP40的影響 57 圖二、利用shRNAs降低Htt和HAP40表現 60 圖三、降低內生性HAP40不會誘導內質網壓力生成 65 圖四、過度表現HAP40不會誘導內質網壓力生成 68 圖五、降低內生性HAP40對高基氏體型態的影響 70 圖六、降低內生性Htt和HAP40造成粒線體分裂,影響ATP含量 73 圖七、降低內生性Htt和HAP40對粒線體融合與分裂機制相關蛋白影響 80 圖八、降低內生性PHB1對Htt、HAP40和OPA1的影響 83 圖九、共同降低內生性HAP40和過度表現PHB1或是HttQ23F,改善粒線體分裂的情況 86 圖十、降低內生性Htt和HAP40對氧化壓力及電子傳遞鍊的影響 92 圖十一、降低內生性Htt和HAP40對細胞訊號傳遞的影響 95 圖十二、亨廷頓相關蛋白對聚集體(Aggresome)的影響 97 圖十三、純化GST-hHAP40蛋白質 99 圖十四、hHAP40會和OmpF產生交互作用 101 圖十五、HAP40作用機制 102

    Andrew, S.E., Y.P. Goldberg, B. Kremer, H. Telenius, J. Theilmann, S. Adam, E. Starr, F. Squitieri, B. Lin, and M.A. Kalchman. 1993. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature genetics. 4:398-403
    .
    Artal-Sanz, M., and N. Tavernarakis. 2009. Prohibitin and mitochondrial biology. Trends in endocrinology and metabolism: TEM. 20:394-401.

    Beal, M.F., E. Brouillet, B.G. Jenkins, R.J. Ferrante, N.W. Kowall, J.M. Miller, E. Storey, R. Srivastava, B.R. Rosen, and B.T. Hyman. 1993. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13:4181-4192.

    Benedetti, C., C.M. Haynes, Y. Yang, H.P. Harding, and D. Ron. 2006. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics. 174:229-239.

    Bereiter-Hahn, J., and M. Voth. 1994. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech. 27:198-219.

    Berger, K.H., and M.P. Yaffe. 1998. Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Mol Cell Biol. 18:4043-4052.

    Bogdanov, M.B., O.A. Andreassen, A. Dedeoglu, R.J. Ferrante, and M.F. Beal. 2001. Increased oxidative damage to DNA in a transgenic mouse model of Huntington's disease. J Neurochem. 79:1246-1249.

    Browne, S.E., A.C. Bowling, U. MacGarvey, M.J. Baik, S.C. Berger, M.M. Muqit, E.D. Bird, and M.F. Beal. 1997. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann Neurol. 41:646-653.
    Calfon, M., H. Zeng, F. Urano, J.H. Till, S.R. Hubbard, H.P. Harding, S.G. Clark, and D. Ron. 2002. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 415:92-96.

    Carnemolla, A., E. Fossale, E. Agostoni, S. Michelazzi, R. Calligaris, L. De Maso, G. Del Sal, M.E. MacDonald, and F. Persichetti. 2009. Rrs1 Is Involved in Endoplasmic Reticulum Stress Response in Huntington Disease. Journal of Biological Chemistry. 284:18167-18173.

    Caviston, J.P., J.L. Ross, S.M. Antony, M. Tokito, and E.L. Holzbaur. 2007. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc Natl Acad Sci U S A. 104:10045-10050.

    Chan, D.C. 2006. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 125:1241-1252.

    Chang, C.R., and C. Blackstone. 2007. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. The Journal of biological chemistry. 282:21583-21587.

    Chen, H., A. Chomyn, and D.C. Chan. 2005. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. The Journal of biological chemistry. 280:26185-26192.

    Chen, X., J. Shen, and R. Prywes. 2002. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. The Journal of biological chemistry. 277:13045-13052.

    Cipolat, S., O. Martins de Brito, B. Dal Zilio, and L. Scorrano. 2004. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A. 101:15927-15932.

    Colin, E., E. Regulier, V. Perrin, A. Durr, A. Brice, P. Aebischer, N. Deglon, S. Humbert, and F. Saudou. 2005. Akt is altered in an animal model of Huntington's disease and in patients. European Journal of Neuroscience. 21:1478-1488.

    Cornett, J., F. Cao, C.E. Wang, C.A. Ross, G.P. Bates, S.H. Li, and X.J. Li. 2005. Polyglutamine expansion of huntingtin impairs its nuclear export. Nat Genet. 37:198-204.

    Cribbs, J.T., and S. Strack. 2007. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8:939-944.

    Cui, L., H. Jeong, F. Borovecki, C.N. Parkhurst, N. Tanese, and D. Krainc. 2006. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell. 127:59-69.

    del Toro, D., J.M. Canals, S. Ginés, M. Kojima, G. Egea, and J. Alberch. 2006. Mutant huntingtin impairs the post-Golgi trafficking of brain-derived neurotrophic factor but not its Val66Met polymorphism. The Journal of neuroscience. 26:12748-12757.

    Duarte, A.I., G.H. Petit, S. Ranganathan, J.Y. Li, C.R. Oliveira, P. Brundin, M. Bjorkqvist, and A.C. Rego. 2011. IGF-1 protects against diabetic features in an in vivo model of Huntington's disease. Exp Neurol. 231:314-319.

    Duennwald, M.L., and S. Lindquist. 2008. Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev. 22:3308-3319.

    Dunn, C.D., M.S. Lee, F.A. Spencer, and R.E. Jensen. 2006. A genomewide screen for petite-negative yeast strains yields a new subunit of the i-AAA protease complex. Mol Biol Cell. 17:213-226.

    Ehses, S., I. Raschke, G. Mancuso, A. Bernacchia, S. Geimer, D. Tondera, J.C. Martinou, B. Westermann, E.I. Rugarli, and T. Langer. 2009. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol. 187:1023-1036.

    Engelender, S., A.H. Sharp, V. Colomer, M.K. Tokito, A. Lanahan, P. Worley, E.L. Holzbaur, and C.A. Ross. 1997. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued bubunit of dynactin. Human molecular genetics. 6:2205-2212.
    Finkel, T., and N.J. Holbrook. 2000. Oxidants, oxidative stress and the biology of ageing. Nature. 408:239-247.

    Franke, T.F., C.P. Hornik, L. Segev, G.A. Shostak, and C. Sugimoto. 2003. PI3K/Akt and apoptosis: size matters. Oncogene. 22:8983-8998.

    Garcia, M., P. Vanhoutte, C. Pages, M.J. Besson, E. Brouillet, and J. Caboche. 2002. The mitochondrial toxin 3-nitropropionic acid induces striatal neurodegeneration via a c-Jun N-terminal kinase/c-Jun module. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22:2174-2184.

    Gauthier, L.R., B.C. Charrin, M. Borrell-Pages, J.P. Dompierre, H. Rangone, F.P. Cordelieres, J. De Mey, M.E. MacDonald, V. Lessmann, S. Humbert, and F. Saudou. 2004. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 118:127-138.

    Gil, J.M., and A.C. Rego. 2008. Mechanisms of neurodegeneration in Huntington’s disease. European Journal of Neuroscience. 27:2803-2820.

    Griparic, L., N.N. van der Wel, I.J. Orozco, P.J. Peters, and A.M. van der Bliek. 2004. Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. The Journal of biological chemistry. 279:18792-18798.

    Gu, M., M.T. Gash, V.M. Mann, F. Javoy-Agid, J.M. Cooper, and A.H. Schapira. 1996. Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol. 39:385-389.

    Halliwell, B., and J.M. Gutteridge. 1984. Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet. 1:1396-1397.

    Ham, J., C. Babij, J. Whitfield, C.M. Pfarr, D. Lallemand, M. Yaniv, and L.L. Rubin. 1995. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron. 14:927-939.

    Harding, H.P., Y. Zhang, and D. Ron. 1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 397:271-274.

    Hayashi, T., and T.-P. Su. 2007. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca 2+ signaling and cell survival. Cell. 131:596-610.

    Haze, K., H. Yoshida, H. Yanagi, T. Yura, and K. Mori. 1999. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Molecular Biology of the Cell. 10:3787-3799.

    He, Y., F. Francis, K.A. Myers, W. Yu, M.M. Black, and P.W. Baas. 2005. Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. J Cell Biol. 168:697-703.

    Head, B., L. Griparic, M. Amiri, S. Gandre-Babbe, and A.M. van der Bliek. 2009. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol. 187:959-966.

    Humbert, S., E.A. Bryson, F.P. Cordelieres, N.C. Connors, S.R. Datta, S. Finkbeiner, M.E. Greenberg, and F. Saudou. 2002. The IGF-1/Akt pathway is neuroprotective in Huntington's disease and involves huntingtin phosphorylation by Akt. Developmental Cell. 2:831-837.

    Hyrskyluoto, A., I. Pulli, K. Törnqvist, T.H. Ho, L. Korhonen, and D. Lindholm. 2013. Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-κB pathway. Cell death & disease. 4:e646.

    Jin, Y.N., Y.V. Yu, S. Gundemir, C. Jo, M. Cui, K. Tieu, and G.V. Johnson. 2013. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PLoS One. 8:e57932.

    Johri, A., and M.F. Beal. 2012. Mitochondrial dysfunction in neurodegenerative diseases. The Journal of pharmacology and experimental therapeutics. 342:619-630.

    Kageyama, Y., Z. Zhang, R. Roda, M. Fukaya, J. Wakabayashi, N. Wakabayashi, T.W. Kensler, P.H. Reddy, M. Iijima, and H. Sesaki. 2012. Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage. J Cell Biol. 197:535-551.

    Kasashima, K., E. Ohta, Y. Kagawa, and H. Endo. 2006. Mitochondrial functions and estrogen receptor-dependent nuclear translocation of pleiotropic human prohibitin 2. The Journal of biological chemistry. 281:36401-36410.

    Kim, J., J.P. Moody, C.K. Edgerly, O.L. Bordiuk, K. Cormier, K. Smith, M.F. Beal, and R.J. Ferrante. 2010. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease. Hum Mol Genet. 19:3919-3935.

    Knott, A.B., G. Perkins, R. Schwarzenbacher, and E. Bossy-Wetzel. 2008. Mitochondrial fragmentation in neurodegeneration. Nature reviews. Neuroscience. 9:505-518.

    Koshiba, T., S.A. Detmer, J.T. Kaiser, H. Chen, J.M. McCaffery, and D.C. Chan. 2004. Structural basis of mitochondrial tethering by mitofusin complexes. Science. 305:858-862.

    Labrousse, A.M., M.D. Zappaterra, D.A. Rube, and A.M. van der Bliek. 1999. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell. 4:815-826.

    Leavitt, B.R., J.M. van Raamsdonk, J. Shehadeh, H. Fernandes, Z. Murphy, R.K. Graham, C.L. Wellington, L.A. Raymond, and M.R. Hayden. 2006. Wild-type huntingtin protects neurons from excitotoxicity. Journal of neurochemistry. 96:1121-1129.

    Lee, K., W. Tirasophon, X. Shen, M. Michalak, R. Prywes, T. Okada, H. Yoshida, K. Mori, and R.J. Kaufman. 2002. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16:452-466.

    Legesse-Miller, A., R.H. Massol, and T. Kirchhausen. 2003. Constriction and Dnm1p recruitment are distinct processes in mitochondrial fission. Mol Biol Cell. 14:1953-1963.

    Liu, Y.F., D. Dorow, and J. Marshall. 2000. Activation of MLK2-mediated signaling cascades by polyglutamine-expanded huntingtin. The Journal of biological chemistry. 275:19035-19040.

    MacDonald, M.E., C.M. Ambrose, M.P. Duyao, R.H. Myers, C. Lin, L. Srinidhi, G. Barnes, S.A. Taylor, M. James, and N. Groot. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 72:971-983.

    Mann, V.M., J.M. Cooper, F. Javoy-Agid, Y. Agid, P. Jenner, and A.H. Schapira. 1990. Mitochondrial function and parental sex effect in Huntington's disease. Lancet. 336:749.

    McCullough, K.D., J.L. Martindale, L.O. Klotz, T.Y. Aw, and N.J. Holbrook. 2001. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 21:1249-1259
    .
    Meriin, A.B., K. Mabuchi, V.L. Gabai, J.A. Yaglom, A. Kazantsev, and M.Y. Sherman. 2001. Intracellular aggregation of polypeptides with expanded polyglutamine domain is stimulated by stress-activated kinase MEKK1. J Cell Biol. 153:851-864.

    Merkwirth, C., S. Dargazanli, T. Tatsuta, S. Geimer, B. Lower, F.T. Wunderlich, J.C. von Kleist-Retzow, A. Waisman, B. Westermann, and T. Langer. 2008. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 22:476-488.

    Merkwirth, C., and T. Langer. 2009. Prohibitin function within mitochondria: Essential roles for cell proliferation and cristae morphogenesis. Bba-Mol Cell Res. 1793:27-32.

    Meunier, J., and T. Hayashi. 2010. Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor κB. Journal of Pharmacology and Experimental Therapeutics. 332:388-397.

    Milakovic, T., and G.V.W. Johnson. 2005. Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant Huntingtin. Journal of Biological Chemistry. 280:30773-30782.

    Naylor, K., E. Ingerman, V. Okreglak, M. Marino, J.E. Hinshaw, and J. Nunnari. 2006. Mdv1 interacts with assembled dnm1 to promote mitochondrial division. The Journal of biological chemistry. 281:2177-2183.

    Nielsen, E., F. Severin, J.M. Backer, A.A. Hyman, and M. Zerial. 1999. Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol. 1:376-382.

    Nunnari, J., W.F. Marshall, A. Straight, A. Murray, J.W. Sedat, and P. Walter. 1997. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Molecular Biology of the Cell. 8:1233-1242.

    Oku, M., S. Tanakura, A. Uemura, M. Sohda, Y. Misumi, M. Taniguchi, S. Wakabayashi, and H. Yoshida. 2011. Novel cis-acting element GASE regulates transcriptional induction by the Golgi stress response. Cell Struct Funct. 36:1-12.

    Olzmann, J.A., L. Li, and L.S. Chin. 2008. Aggresome formation and neurodegenerative diseases: therapeutic implications. Curr Med Chem. 15:47-60.

    Pal, A., F. Severin, B. Lommer, A. Shevchenko, and M. Zerial. 2006. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's disease. The Journal of cell biology. 172:605-618.

    Perrin, V., N. Dufour, C. Raoul, R. Hassig, E. Brouillet, P. Aebischer, R. Luthi-Carter, and N. Deglon. 2009. Implication of the JNK pathway in a rat model of Huntington's disease. Exp Neurol. 215:191-200.

    Peters, M.F., and C.A. Ross. 2001. Isolation of a 40-kDa Huntingtin-associated protein. The Journal of biological chemistry. 276:3188-3194.

    Reijonen, S., J.P. Kukkonen, A. Hyrskyluoto, J. Kivinen, M. Kairisalo, N. Takei, D. Lindholm, and L. Korhonen. 2010. Downregulation of NF-κB signaling by mutant huntingtin proteins induces oxidative stress and cell death. Cellular and molecular life sciences. 67:1929-1941.

    Ribeiro, M., T.R. Rosenstock, A.M. Oliveira, C.R. Oliveira, and A.C. Rego. 2014. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington’s disease knock-in striatal cells. Free Radical Biology and Medicine. 74:129-144.

    Ron, D., and P. Walter. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nature reviews. Molecular cell biology. 8:519-529.

    Roussel, B.D., A.J. Kruppa, E. Miranda, D.C. Crowther, D.A. Lomas, and S.J. Marciniak. 2013. Endoplasmic reticulum dysfunction in neurological disease. The Lancet. Neurology. 12:105-118.

    Rutkowski, D.T., S.M. Arnold, C.N. Miller, J. Wu, J. Li, K.M. Gunnison, K. Mori, A.A.S. Akha, D. Raden, and R.J. Kaufman. 2006. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. Plos Biology. 4:2024-2041.

    Sarangi, U., M.K. Singh, K.V.V. Abhijnya, L.P.A. Reddy, B.S. Prasad, V.V. Pitke, K. Paithankar, and A.S. Sreedhar. 2013. Hsp60 chaperonin acts as barrier to pharmacologically induced oxidative stress mediated apoptosis in tumor cells with differential stress response. Drug target insights. 7:35.

    Sato, S.-i., A. Murata, T. Orihara, T. Shirakawa, K. Suenaga, H. Kigoshi, and M. Uesugi. 2011. Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chemistry & biology. 18:131-139.

    Sbodio, J.I., B.D. Paul, C.E. Machamer, and S.H. Snyder. 2013. Golgi protein ACBD3 mediates neurotoxicity associated with Huntington’s disease. Cell reports. 4:890-897.

    Schleicher, M., B.R. Shepherd, Y. Suarez, C. Fernandez-Hernando, J. Yu, Y. Pan, L.M. Acevedo, G.S. Shadel, and W.C. Sessa. 2008. Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence. J Cell Biol. 180:101-112.

    Schröder, M., and R.J. Kaufman. 2005. The mammalian unfolded protein response. Annu. Rev. Biochem. 74:739-789.

    Sherman, M.Y., and A.L. Goldberg. 2001. Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases. Neuron. 29:15-32.

    Shirendeb, U., A.P. Reddy, M. Manczak, M.J. Calkins, P. Mao, D.A. Tagle, and P.H. Reddy. 2011. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum Mol Genet. 20:1438-1455.

    Shirendeb, U.P., M.J. Calkins, M. Manczak, V. Anekonda, B. Dufour, J.L. McBride, P. Mao, and P.H. Reddy. 2012. Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease. Hum Mol Genet. 21:406-420.

    Song, Z.Y., H.C. Chen, M. Fiket, C. Alexander, and D.C. Chan. 2007. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 178:749-755.

    Stack, E.C., W.R. Matson, and R.J. Ferrante. 2008. Evidence of Oxidant Damage in Huntington's Disease: Translational Strategies Using Antioxidants. Ann Ny Acad Sci. 1147:79-92.

    Strehlow, A.N.T., J.Z. Li, and R.M. Myers. 2007. Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. Human Molecular Genetics. 16:391-409.

    Tammariello, S.P., G.E. Landreth, and S. Estus. 2001. The role of Jun kinases in apoptosis. Advances in Cell Aging and Gerontology. 5:197-214.

    Tsunemi, T., T.D. Ashe, B.E. Morrison, K.R. Soriano, J. Au, R.A.V. Roque, E.R. Lazarowski, V.A. Damian, E. Masliah, and A.R. La Spada. 2012. PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Science translational medicine. 4:142ra197-142ra197.

    Valencia, A., E. Sapp, J.S. Kimm, H. McClory, K.A. Ansong, G. Yohrling, S. Kwak, K.B. Kegel, K.M. Green, and S.A. Shaffer. 2013. Striatal Synaptosomes from Hdh140Q/140Q Knock-in Mice have Altered Protein Levels, Novel Sites of Methionine Oxidation, and Excess Glutamate Release after Stimulation. Journal of Huntington's disease. 2:459.

    Van Raamsdonk, J.M., J. Pearson, Z. Murphy, M.R. Hayden, and B.R. Leavitt. 2006. Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease. BMC neuroscience. 7:80.

    Vidal, R., B. Caballero, A. Couve, and C. Hetz. 2011. Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington's disease. Curr Mol Med. 11:1-12.

    Waelter, S., A. Boeddrich, R. Lurz, E. Scherzinger, G. Lueder, H. Lehrach, and E.E. Wanker. 2001. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Molecular Biology of the Cell. 12:1393-1407.

    Wang, H., P.J. Lim, M. Karbowski, and M.J. Monteiro. 2009. Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet. 18:737-752.

    Xia, J., D.H. Lee, J. Taylor, M. Vandelft, and R. Truant. 2003. Huntingtin contains a highly conserved nuclear export signal. Hum Mol Genet. 12:1393-1403.

    Yoneda, T., C. Benedetti, F. Urano, S.G. Clark, H.P. Harding, and D. Ron. 2004. Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci. 117:4055-4066.

    Yoshida, H., T. Matsui, A. Yamamoto, T. Okada, and K. Mori. 2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107:881-891.

    Yu, T., J.L. Robotham, and Y. Yoon. 2006. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A. 103:2653-2658.

    Yu, T.Z., S.S. Sheu, J.L. Robotham, and Y.S. Yoon. 2008. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovascular Research. 79:341-351.

    Zhang, Y., and D.C. Chan. 2007. Structural basis for recruitment of mitochondrial fission complexes by Fis1. Proc Natl Acad Sci U S A. 104:18526-18530.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE