簡易檢索 / 詳目顯示

研究生: 林怡萱
Lin, Yi-Xuan
論文名稱: 探討多元不飽和脂肪酸亞麻油酸與單元不飽和脂肪酸油酸在HepG2肝癌細胞中所引起的油滴累積與氧化壓力之間的關係
The correlation between oxidative stress and lipid droplets induced by polyunsaturated linoleic acid and monounsaturated oleic acid in HepG2 cells
指導教授: 彭怡禎
Peng, I-Chen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 66
中文關鍵詞: 油滴亞麻油酸油酸氧化壓力肝癌
外文關鍵詞: Lipid droplets, linoleic acid, oleic acid, oxidative stress, liver cancer
相關次數: 點閱:71下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 油滴是細胞中主要負責儲存脂質的胞器,而近年來的研究結果已經將油滴的功能拓展為適應性胞器而不單只是脂肪儲存,例如:調節脂質含量,防止脂毒性及蛋白質降解,以及抗氧化等。然而對於油滴在癌細胞中的功能性則尚不清楚。在這裡,我們想去探討多元不飽和脂肪酸亞麻油酸,與單元不飽和脂肪酸油酸,是否會在癌細胞中引起油滴累積,以及油滴累積在癌細胞中的功能。本研究結果顯示,在HepG2肝癌細胞中,亞麻油酸與油酸皆會造成大量的油滴累積,且亞麻油酸會抑制癌細胞的生長,而油酸則促進癌細胞的生長。當抑制癌細胞中油滴累積時,會導致癌細胞生長受到抑制。另外,在氧化壓力的實驗中,我們也發現亞麻油酸與油酸所引起的油滴累積具有對抗氧化壓力的作用,進而幫助細胞存活。因此油滴可作為保護癌細胞生長的機制之一。

    Lipid droplets (LDs) are the organelles for the storage of lipids in the cell. Recent findings have demonstrated that LDs function as adaptable organelles rather than fat storage. Many studies have shown the multiple functions of LDs, such as regulating cellular lipid content, preventing lipid toxicity as well as protein degradation, and antioxidation. However, the functions of LDs in cancer cells remain unclear. Therefore, we want to investigate whether polyunsaturated linoleic acid (LA) and monounsaturated oleic acid (OA) induce LDs accumulation, and also clarify the roles of LDs in liver cancer cells. The results showed that both LA and OA induced a large number of LDs in HepG2 cells. Meanwhile, LA inhibited but OA promoted HepG2 cell growth. Moreover, when the LDs formation was inhibited, the cell growth was repressed. On the other hand, we also found that the LDs induced by LA or OA had antioxidation effects and could help cells to survive. Thus, LDs can protect cancer cells from oxidative stress-suppressed cell growth.

    目錄 摘要 I 致謝 V 目錄 VII 圖目錄 IX 表目錄 X 研究背景 1 1.油滴 1 1.1油滴的結構 1 1.2油滴的合成與分解 2 1.3油滴的作用 3 1.4油滴與癌症 4 2.脂肪酸 5 2.1脂肪酸的分類 5 2.2棕櫚酸 6 2.3亞麻油酸 6 2.4油酸 7 2.5脂肪酸與油滴 8 2.6脂肪酸與癌症 9 3.氧化壓力 10 3.1氧化壓力與脂肪酸 10 3.2氧化壓力與油滴 12 3.3氧化壓力與癌症 13 4.自噬 14 4.1自噬的過程與調控 14 4.2自噬與油滴 15 研究目的 17 材料與方法 18 結果 22 1. 在HepG2細胞中,亞麻油酸 (LA)與油酸 (OA)皆會造成大量的油滴累積,且LA會抑制細胞生長,OA則會促進細胞生長 22 2. 抑制LA或OA所引起的油滴的累積會導致HepG2細胞生長受到抑制 23 3. 油滴累積可以降低氧化壓力所導致的細胞死亡 24 4. 在HepG2細胞中,LA會經由活化AMPK促進自噬反應,然而抑制自噬或AMPK活性卻不會抑制油滴累積 26 討論 28 參考文獻 32   圖目錄 圖 1、亞麻油酸LA促進HepG2細胞中大量的油滴累積,並抑制HepG2細胞生長 45 圖 2、油酸OA促進HepG2細胞中大量的油滴累積,並促進HepG2細胞生長 46 圖 3、棕櫚酸PA促進HepG2細胞中大量的油滴累積,並抑制HepG2細胞生長 47 圖 4、在亞麻油酸LA處理下,利用DGAT1抑制劑A922500抑制油滴累積會導致HepG2細胞的生長受到抑制 48 圖 5、在亞麻油酸LA處理下,利用ACS抑制劑Triacsin C抑制油滴累積會導致HepG2細胞的生長受到抑制 50 圖 6、在油酸OA處理下,利用DGAT1抑制劑A922500抑制HepG2細胞中油滴累積進而抑制HepG2細胞生長 52 圖 7、在H2O2誘發氧化壓力的情況下,再加入亞麻油酸LA,會導致更多的油滴累積,並降低氧化壓力所引起的抑制細胞生長 54 圖 8、在H2O2誘發氧化壓力的情況下,再加入油酸OA,會導致更多的油滴累積,並降低氧化壓力所引起的抑制細胞生長 56 圖 9、在HepG2細胞中,抑制亞麻油酸LA所引起的油滴累積會增加細胞內ROS的含量 58 圖 10、在HepG2細胞中,抑制油酸OA所引起的油滴累積會增加細胞內ROS的含量 59 圖 11、亞麻油酸LA會誘導HepG2細胞中的自噬反應,但抑制自噬反應不會抑制油滴累積 60 圖 12、亞麻油酸LA在HepG2細胞中會經由活化AMPK促進自噬反應,但抑制AMPK活性不會抑制油滴累積 62 圖 13、0.1 mM亞麻油酸LA會促進HepG2細胞中小量油滴的累積並抑制肝癌細胞生長 66 圖 14、亞麻油酸LA會抑制脂肪合成相關基因ACC1、SREBP1和FAS的表達 67 圖 15、在亞麻油酸LA理下,利用ACC抑制劑TOFA抑制油滴累積,或導致HepG2細胞的生長受到抑制 69 表目錄 表格 1、縮寫表 XI

    Abramczyk, H., Surmacki, J., Kopec, M., Olejnik, A. K., Lubecka-Pietruszewska, K., & Fabianowska-Majewska, K. (2015). The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst, 140(7), 2224-2235.
    Ahmadian, M., Wang, Y., & Sul, H. S. (2010). Lipolysis in adipocytes. Int J Biochem Cell Biol, 42(5), 555-559.
    Al-Khudairy, L., Hartley, L., Clar, C., Flowers, N., Hooper, L., & Rees, K. (2015). Omega 6 fatty acids for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev(11), CD011094.
    Bailey, A. P., Koster, G., Guillermier, C., Hirst, E. M., MacRae, J. I., Lechene, C. P., et al. (2015). Antioxidant Role for Lipid Droplets in a Stem Cell Niche of Drosophila. Cell, 163(2), 340-353.
    Balaban, S., Shearer, R. F., Lee, L. S., van Geldermalsen, M., Schreuder, M., Shtein, H. C., et al. (2017). Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab, 5(1), 1.
    Barrera, G. (2012). Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol, 2012, 137289.
    Beermann, C., Jelinek, J., Reinecker, T., Hauenschild, A., Boehm, G., & Klor, H. U. (2003). Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers. Lipids Health Dis, 2(1), 10.
    Bickel, P. E., Tansey, J. T., & Welte, M. A. (2009). PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 1791(6), 419-440.
    Bosma, M., Hesselink, M. K., Sparks, L. M., Timmers, S., Ferraz, M. J., Mattijssen, F., et al. (2012). Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabetes, 61(11), 2679-2690.
    Brasaemle, D. L. (2007). Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res, 48(12), 2547-2559.
    Brown, Z. J., Fu, Q., Ma, C., Kruhlak, M., Zhang, H., Luo, J., et al. (2018). Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4(+) T cell apoptosis promoting HCC development. Cell Death Dis, 9(6), 620.
    Burns, J. L., Nakamura, M. T., & Ma, D. W. L. (2018). Differentiating the biological effects of linoleic acid from arachidonic acid in health and disease. Prostaglandins Leukot Essent Fatty Acids, 135, 1-4.
    Carta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front Physiol, 8, 902.
    Chajès, Véronique, Cambot, Marie, Moreau, Karen, Lenoir, Gilbert M, & Joulin, Virginie (2006). Acetyl-CoA carboxylase α is essential to breast cancer cell survival. J Cancer research, 66(10), 5287-5294.
    Cheng, C. M., Ru, P., Geng, F., Liu, J. F., Yoo, J. Y., Wu, X. N., et al. (2015). Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth. Cancer Cell, 28(5), 569-581.
    Cho, K. H., Hong, J. H., & Lee, K. T. (2010). Monoacylglycerol (MAG)-Oleic Acid Has Stronger Antioxidant, Anti-Atherosclerotic, and Protein Glycation Inhibitory Activities than MAG-Palmitic Acid. Journal of Medicinal Food, 13(1), 99-107.
    Choi, Yung Hyun (2014). Linoleic acid-induced growth inhibition of human gastric epithelial adenocarcinoma AGS cells is associated with down-regulation of prostaglandin E2 synthesis and telomerase activity. Journal of cancer prevention, 19(1), 31.
    Choi, Yung Hyun (2014). Linoleic acid-induced growth inhibition of human gastric epithelial adenocarcinoma AGS cells is associated with down-regulation of prostaglandin E2 synthesis and telomerase activity. Journal of cancer prevention, 19(1), 31.
    Cohen, J. C., Horton, J. D., & Hobbs, H. H. (2011). Human fatty liver disease: old questions and new insights. Science, 332(6037), 1519-1523.
    Cuervo, A. M., & Wong, E. (2014). Chaperone-mediated autophagy: roles in disease and aging. Cell Res, 24(1), 92-104.
    Di Nunzio, M., Valli, V., & Bordoni, A. (2016). PUFA and oxidative stress. Differential modulation of the cell response by DHA. Int J Food Sci Nutr, 67(7), 834-843.
    Donnelly, K. L., Smith, C. I., Schwarzenberg, S. J., Jessurun, J., Boldt, M. D., & Parks, E. J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest, 115(5), 1343-1351.
    Duncan, R. E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E., & Sul, H. S. (2007). Regulation of lipolysis in adipocytes. Annu Rev Nutr, 27, 79-101.
    Duval, C., Auge, N., Frisach, M. F., Casteilla, L., Salvayre, R., & Negre-Salvayre, A. (2002). Mitochondrial oxidative stress is modulated by oleic acid via an epidermal growth factor receptor-dependent activation of glutathione peroxidase. Biochemical Journal, 367(3), 889-894.
    Edwards, Thomas L, Clowes, Virginia E, Tsang, Hilda TH, Connell, James W, Sanderson, Christopher M, Luzio, J Paul, et al. (2009). Endogenous spartin (SPG20) is recruited to endosomes and lipid droplets and interacts with the ubiquitin E3 ligases AIP4 and AIP5. 423(1), 31-39.
    Ehehalt, Robert, Füllekrug, Joachim, Pohl, Jürgen, Ring, Axel, Herrmann, Thomas, & Stremmel, Wolfgang (2006). Translocation of long chain fatty acids across the plasma membrane–lipid rafts and fatty acid transport proteins. J Molecular cellular biochemistry, 284(1-2), 135-140.
    Gazi, E., Gardner, P., Lockyer, N. P., Hart, C. A., Brown, M. D., & Clarke, N. W. (2007). Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy. Journal of Lipid Research, 48(8), 1846-1856.
    Giordano, E., & Visioli, F. (2014). Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions. Prostaglandins Leukot Essent Fatty Acids, 90(1), 1-4.
    Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. J Pathol, 221(1), 3-12.
    Goodman, J. M. (2008). The gregarious lipid droplet. J Biol Chem, 283(42), 28005-28009.
    Greenberg, A. S., Coleman, R. A., Kraemer, F. B., McManaman, J. L., Obin, M. S., Puri, V., et al. (2011). The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest, 121(6), 2102-2110.
    Gross, D. A., & Silver, D. L. (2014). Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol, 49(4), 304-326.
    Grundt, H., Nilsen, D. W., Mansoor, M. A., & Nordoy, A. (2003). Increased lipid peroxidation during long-term intervention with high doses of n-3 fatty acids (PUFAs) following an acute myocardial infarction. Eur J Clin Nutr, 57(6), 793-800.
    Guo, Y., Cordes, K. R., Farese, R. V., & Walther, T. C. (2009). Lipid droplets at a glance. Journal of Cell Science, 122(6), 749-752.
    Halliwell, B., & Chirico, S. (1993). Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr, 57(5 Suppl), 715S-724S; discussion 724S-725S.
    Hapala, Ivan, Marza, Esther, & Ferreira, Thierry (2011a). Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation. J Biology of the Cell, 103(6), 271-285.
    Hapala, Ivan, Marza, Esther, & Ferreira, Thierry (2011b). Is fat so bad? Modulation of endoplasmic reticulum stress by lipid droplet formation. J Biology of the Cell, 103(6), 271-285.
    Hardy, S., El-Assaad, W., Przybytkowski, E., Joly, E., Prentki, M., & Langelier, Y. (2003). Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells - A role for cardiolipin. Journal of Biological Chemistry, 278(34), 31861-31870.
    Hardy, S., St-Onge, G. G., Joly, E., Langelier, Y., & Prentki, M. (2005). Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40. J Biol Chem, 280(14), 13285-13291.
    He, C., & Klionsky, D. J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet, 43, 67-93.
    Innis, S. M. (2016). Palmitic Acid in Early Human Development. Crit Rev Food Sci Nutr, 56(12), 1952-1959.
    Inoki, K., Zhu, T., & Guan, K. L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115(5), 577-590.
    Jabs, T. (1999). Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochemical Pharmacology, 57(3), 231-245.
    Kaur, J., & Debnath, J. (2015). Autophagy at the crossroads of catabolism and anabolism. Nature Reviews Molecular Cell Biology, 16(8), 461-472.
    Klecker, T., Braun, R. J., & Westermann, B. (2017). Lipid Droplets Guard Mitochondria during Autophagy. Dev Cell, 42(1), 1-2.
    Kuerschner, L., Moessinger, C., & Thiele, C. (2008). Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic, 9(3), 338-352.
    Lee, J., Giordano, S., & Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J, 441(2), 523-540.
    Li, S., Zhou, T., Li, C., Dai, Z., Che, D., Yao, Y., et al. (2014). High metastaticgastric and breast cancer cells consume oleic acid in an AMPK dependent manner. PLoS One, 9(5), e97330.
    Li, Thomas SC. (1999). Sea buckthorn: New crop opportunity.
    Li, W. W., Li, J., & Bao, J. K. (2012). Microautophagy: lesser-known self-eating. Cell Mol Life Sci, 69(7), 1125-1136.
    Li, Y., Zong, W. X., & Ding, W. X. (2017). Recycling the danger via lipid droplet biogenesis after autophagy. Autophagy, 13(11), 1995-1997.
    Listenberger, L. L., Han, X., Lewis, S. E., Cases, S., Farese, R. V., Jr., Ory, D. S., et al. (2003). Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A, 100(6), 3077-3082.
    Lu, X., Yu, H., Ma, Q., Shen, S., & Das, U. N. (2010). Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction. Lipids Health Dis, 9(1), 106.
    Lv, Z. H., Ma, P., Luo, W., Xiong, H., Han, L., Li, S. W., et al. (2014). Association between serum free fatty acid levels and possible related factors in patients with type 2 diabetes mellitus and acute myocardial infarction. Bmc Cardiovascular Disorders, 14(1), 159.
    Maggiora, Marina, Bologna, Mauro, Cerù, Maria Paola, Possati, Laura, Angelucci, Angelo, Cimini, Anna, et al. (2004). An overview of the effect of linoleic and conjugated‐linoleic acids on the growth of several human tumor cell lines. 112(6), 909-919.
    Mandal, S, Causevic, A, Dzudzevic-Cancar, H, & Semiz, S. (2017). Free fatty acid profile in Type 2 diabetic subjects with different control of glycemia CMBEBIH 2017 (pp. 781-786): Springer.
    Martin, Sally, & Parton, Robert G (2006). Opinion: Lipid droplets: a unified view of a dynamic organelle. J Nature reviews Molecular cell biology, 7(5), 373.
    Mei, S., Ni, H. M., Manley, S., Bockus, A., Kassel, K. M., Luyendyk, J. P., et al. (2011). Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J Pharmacol Exp Ther, 339(2), 487-498.
    Melo, R. C., D'Avila, H., Wan, H. C., Bozza, P. T., Dvorak, A. M., & Weller, P. F. (2011). Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J Histochem Cytochem, 59(5), 540-556.
    Menendez, J. A., & Lupu, R. (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer, 7(10), 763-777.
    Mizushima, N., & Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell, 147(4), 728-741.
    Murphy, S., Martin, S., & Parton, R. G. (2009). Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta, 1791(6), 441-447.
    Nath, A., Li, I., Roberts, L. R., & Chan, C. (2015). Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep, 5, 14752.
    Nelson, M. E., Lahiri, S., Chow, J. D., Byrne, F. L., Hargett, S. R., Breen, D. S., et al. (2017). Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nat Commun, 8, 14689.
    Noda, T., & Ohsumi, Y. (1998). Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem, 273(7), 3963-3966.
    Ntambi, James M, Miyazaki, Makoto, Stoehr, Jonathan P, Lan, Hong, Kendziorski, Christina M, Yandell, Brian S, et al. (2002). Loss of stearoyl–CoA desaturase-1 function protects mice against adiposity. 99(17), 11482-11486.
    Ohsaki, Y., Cheng, J., Fujita, A., Tokumoto, T., & Fujimoto, T. (2006). Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol Biol Cell, 17(6), 2674-2683.
    Olzmann, James A, & Carvalho, Pedro. (2018). Dynamics and functions of lipid droplets. J Nature Reviews Molecular Cell Biology, 1.
    Ozben, T. (2007). Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci, 96(9), 2181-2196.
    Pala, V., Krogh, V., Muti, P., Chajes, V., Riboli, E., Micheli, A., et al. (2001). Erythrocyte membrane fatty acids and subsequent breast cancer: a prospective Italian study. J Natl Cancer Inst, 93(14), 1088-1095.
    Paradies, G., Petrosillo, G., Pistolese, M., & Ruggiero, F. M. (2002). Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene, 286(1), 135-141.
    Perreault, M., Zulyniak, M. A., Badoud, F., Stephenson, S., Badawi, A., Buchholz, A., et al. (2014). A distinct fatty acid profile underlies the reduced inflammatory state of metabolically healthy obese individuals. PLoS One, 9(2), e88539.
    Preedy, Victor R, & Watson, Ronald Ross. (2010). Olives and olive oil in health and disease prevention: Academic press.
    Reed, T. T. (2011). Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med, 51(7), 1302-1319.
    Reuter, Simone, Gupta, Subash C, Chaturvedi, Madan M, Aggarwal, Bharat B, & Medicine. (2010). Oxidative stress, inflammation, and cancer: how are they linked? J Free Radical Biology, 49(11), 1603-1616.
    Ricchi, M., Odoardi, M. R., Carulli, L., Anzivino, C., Ballestri, S., Pinetti, A., et al. (2009). Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol, 24(5), 830-840.
    Rohrig, F., & Schulze, A. (2016). The multifaceted roles of fatty acid synthesis in cancer. Nature Reviews Cancer, 16(11), 732-749.
    Rohwedder, Arndt, Zhang, Qifeng, Rudge, Simon A, & Wakelam, Michael JO (2014). Lipid droplet formation in response to oleic acid in Huh-7 cells is a fatty acid receptor mediated event. J Cell Sci, jcs. 145854.
    Rustan, Arild C, & Drevon, Christian A (2001). Fatty acids: structures and properties. J e LS.
    Rysman, E., Brusselmans, K., Scheys, K., Timmermans, L., Derua, R., Munck, S., et al. (2010). De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res, 70(20), 8117-8126.
    Sanders, Thomas. (2015). Functional Dietary Lipids: Food Formulation, Consumer Issues and Innovation for Health: Woodhead Publishing.
    Scaglia, N., Chisholm, J. W., & Igal, R. A. (2009). Inhibition of stearoylCoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK. PLoS One, 4(8), e6812.
    Schaffer, J. E., & Lodish, H. F. (1994). Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell, 79(3), 427-436.
    Shen, Y., Zhao, Z., Zhang, L., Shi, L., Shahriar, S., Chan, R. B., et al. (2017). Metabolic activity induces membrane phase separation in endoplasmic reticulum. Proc Natl Acad Sci U S A, 114(51), 13394-13399.
    Shyu, P., Wong, X. F. A., Crasta, K., & Thibault, G. (2018). Dropping in on lipid droplets: insights into cellular stress and cancer. Bioscience Reports, 38(5), BSR20180764.
    Siri-Tarino, P. W., Chiu, S., Bergeron, N., & Krauss, R. M. (2015). Saturated Fats Versus Polyunsaturated Fats Versus Carbohydrates for Cardiovascular Disease Prevention and Treatment. Annu Rev Nutr, 35, 517-543.
    Sosa, V., Moline, T., Somoza, R., Paciucci, R., Kondoh, H., & ME, L. Leonart. (2013). Oxidative stress and cancer: an overview. Ageing Res Rev, 12(1), 376-390.
    Stone, S. J., Levin, M. C., Zhou, P., Han, J. Y., Walther, T. C., & Farese, R. V. (2009). The Endoplasmic Reticulum Enzyme DGAT2 Is Found in Mitochondria-associated Membranes and Has a Mitochondrial Targeting Signal That Promotes Its Association with Mitochondria. Journal of Biological Chemistry, 284(8), 5352-5361.
    Svensson, R. U., Parker, S. J., Eichner, L. J., Kolar, M. J., Wallace, M., Brun, S. N., et al. (2016). Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med, 22(10), 1108-1119.
    Thanan, R., Oikawa, S., Hiraku, Y., Ohnishi, S., Ma, N., Pinlaor, S., et al. (2015). Oxidative Stress and Its Significant Roles in Neurodegenerative Diseases and Cancer. International Journal of Molecular Sciences, 16(1), 193-217.
    Tirinato, L., Liberale, C., Di Franco, S., Candeloro, P., Benfante, A., La Rocca, R., et al. (2015). Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells, 33(1), 35-44.
    Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39(1), 44-84.
    Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029-1033.
    Vangaveti, V. N., Jansen, H., Kennedy, R. L., & Malabu, U. H. (2016). Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer. European Journal of Pharmacology, 785, 70-76.
    Walther, T. C., & Farese, R. V., Jr. (2012). Lipid droplets and cellular lipid metabolism. Annu Rev Biochem, 81, 687-714.
    Welte, M. A. (2007). Proteins under new management: lipid droplets deliver. Trends Cell Biol, 17(8), 363-369.
    Welte, M. A. (2015). Expanding roles for lipid droplets. Curr Biol, 25(11), R470-481.
    Whelan, J., & Fritsche, K. (2013). Linoleic acid. Adv Nutr, 4(3), 311-312.
    Who, Joint, & Organization, World Health. (2003). Diet, nutrition and the prevention of chronic diseases: report of a joint WH.
    Xiang, F., Wu, K., Liu, Y., Shi, L., Wang, D., Li, G., et al. (2017). Omental adipocytes enhance the invasiveness of gastric cancer cells by oleic acid-induced activation of the PI3K-Akt signaling pathway. Int J Biochem Cell Biol, 84, 14-21.
    Xu, T., Liu, S., Ma, T., Jia, Z., Zhang, Z., & Wang, A. (2017). Aldehyde dehydrogenase 2 protects against oxidative stress associated with pulmonary arterial hypertension. Redox Biol, 11, 286-296.
    Yue, S., Li, J., Lee, S. Y., Lee, H. J., Shao, T., Song, B., et al. (2014). Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab, 19(3), 393-406.
    Zhang, J. W., Zhao, Y., Xu, C. F., Hong, Y. N., Lu, H. L., Wu, J. P., et al. (2014). Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional study. Scientific Reports, 4, 5832.
    Zhang, Y., Xue, R., Zhang, Z., Yang, X., & Shi, H. (2012). Palmitic and linoleic acids induce ER stress and apoptosis in hepatoma cells. Lipids Health Dis, 11(1), 1.

    無法下載圖示 校內:2024-03-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE